博碩士論文 103223035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.220.206.141
姓名 余序恩(Xu-En Yu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides
★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應
★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究
★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析
★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用★ 人類生長激素受體細胞膜內部份的純化與結構探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究開發微脂體以主動包覆方式包覆數種醫學上重要的藥物及化合物。其中被包覆物聚焦在治療心肌細胞受損(缺氧後再灌流)的藥物與近紅外光螢光染劑。
心肌缺氧後再灌流(reperfusion)對心肌的再傷害為心臟病治療一棘手問題。目前臨床上治療此傷害的方式為投放藥物治療。但由於藥物生物分布選擇性差,造成藥效降低,所以選擇性將治療再灌留藥物集中分布到受損心肌以提高藥物被利用的效果為治療的重要課題。本實驗為開發新藥物及化合物的微脂體主動包覆的方法為主。嘗試各種不同trapping agent的鹽類梯度,利用主動包覆的方法,提升大部分的藥物被包覆於微脂體內之機率及包覆效率。以供後續團隊可嘗試證實此類微脂體藥物治療心肌受損的可行性。
包覆紅外光螢光染劑則是在活體內偵測微脂體可被引信響應釋放的重要方法。目前微脂體活體內影像學僅具有只能看出微脂體的分布,而無法看出微脂體的釋放的限制。此計畫試圖開發高濃度的紅外螢光染料的主動包覆,再利用實驗室另行開發的引信響應方法,使微脂體快速將讓大部分的染劑被釋放出來,達到活體內觀測微脂體釋放的效果。
摘要(英) My thesis work is to develop active (remote) loading methods for encapsulating (1) myocardial reperfusion injury drugs and (2) near infrared dyes (for in vivo imaging) into liposomes.
Reperfusion injury might be treated if we can spatial-selectively deliver the drug to the reperfusion area and rapidly unload the drug before irreversible damage occurs. This work is a sub-project that focuses on the development of highly efficient content encapsulation of liposome using active loading approach. We have screened and found several trapping agents / drug pairs that can offer high loading efficiency.
The second part of this work is, instead of loading myocardial infarction drugs, to encapsulate near-infrared (NIR) dyes for the detection of liposomal triggered release, in live small animal and in real time fashion. At present, dye encapsulated liposome in vivo imaging studies only allow us to see the biodistribution of liposome. To the best of our knowledge, liposome triggered-release that can be fluorescently visualized in small animal has not been reported yet. In the second project, we also tried to screen many pairs of trapping agents and NIR dyes to identify the best combination for NIR dye-encapsulated liposome in which the dye concentration is high enough for fluorescently self-quenched. In the future, hopefully we can use the fluorescent reporting, dye-encapsulated liposome to confirm the liposomal triggered release in small animal level.
關鍵字(中) ★ 微脂體
★ 藥物包覆
關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
縮寫表 XI
第一章 緒論 1
1.1 前言 1
1.2 微脂體 (liposome) 2
1.3 微脂體藥物包覆方法 6
1.3.1 被動包覆 6
1.3.2 主動包覆 7
1.4 研究目的 11
第二章 實驗儀器與材料 18
2.1 實驗儀器 18
2.2 實驗材料 19
第三章 實驗方法 23
3.1各式微脂體製備 23
3.2微脂體定量 24
3.3藥物包覆 25
3.4自製尺寸分離液相層析法 26
3.5 Zetasizer 27
3.6冷凍生物電子顯微技術 (Cryo-EM) 28
3.7電子自旋共振儀 (electron spin resonance ; ESR) 29
第四章 實驗結果與討論 (Part I) 30
4.1 不同的trapping agent 包覆藥物 30
4.1.1 IOX2 30
4.1.2 4-胺-2,2,6,6-四甲基二苯?酯 (Tempamine) 35
4.1.3 2-丁亞磺醯-4-苯-6-?吩-2-?吩並[5,4-b]?啶-3-胺 (Sw033291) 39
4.2 不同的trapping agent 包覆染劑 43
4.2.1 ICG 43
4.2.2 IR820 46
4.2.3 Cy 5.5 derivatives 48
第五章 實驗結果與討論 (Part II) 57
5.1 微脂體包覆缺氧心臟再灌流傷害用藥 57
5.2 微脂體包覆近紅外光染劑 58
5.3 微脂體膜組成的決定 59
5.4 微脂體內部鹽類對包覆的影響 60
第六章 總結 61
參考文獻 62
附錄 69

參考文獻 1. Torchilin, V. P., Multifunctional nanocarriers. Advanced Drug Delivery Reviews 2012, 64, Supplement, 302-315.
2. Needham, D.; Anyarambhatla, G.; Kong, G.; Dewhirst, M. W., A new temperature-sensitive liposome for use with mild hyperthermia: Characterization and testing in a human tumor xenograft model. Cancer Res. 2000, 60 (5), 1197-1201.
3. Grull, H.; Langereis, S., Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. Journal of Controlled Release 2012, 161 (2), 317-327.
4. Lee, S. M.; Chen, H.; Dettmer, C. M.; O′Halloran, T. V.; Nguyen, S. T., Polymer-caged lipsomes: A pH-Responsive delivery system with high stability. J. Am. Chem. Soc. 2007, 129 (49), 15096-+.
5. Lozano, N.; Al-Ahmady, Z. S.; Beziere, N. S.; Ntziachristos, V.; Kostarelos, K., Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. Int. J. Pharm. 2015, 482 (1-2), 2-10.
6. Prabhu, P.; Shetty, R.; Koland, M.; Vijayanarayana, K.; Vijayalakshmi, K. K.; Nairy, M. H.; Nisha, G. S., Investigation of nano lipid vesicles of methotrexate for anti-rheumatoid activity. Int. J. Nanomed. 2012, 7, 177-186.
7. Barenholz, Y., Doxil (R) - The first FDA-approved nano-drug: Lessons learned. Journal of Controlled Release 2012, 160 (2), 117-134.
8. Bangham, A. D.; Horne, R. W., Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. Journal of Molecular Biology 1964, 8 (5), 660-IN10.
9. Sessa, G.; Weissmann, G., INCORPORATION OF LYSOZYME INTO LIPOSOMES - A MODEL FOR STRUCTURE-LINKED LATENCY. J. Biol. Chem. 1970, 245 (13), 3295-+.
10. Gregoriadis , G., The Carrier Potential of Liposomes in Biology and Medicine. New England Journal of Medicine 1976, 295 (13), 704-710.
11. Farokhzad, O. C.; Jon, S. Y.; Khademhosseini, A.; Tran, T. N. T.; LaVan, D. A.; Langer, R., Nanopartide-aptamer bioconjugates: A new approach for targeting prostate cancer cells. Cancer Res. 2004, 64 (21), 7668-7672.
12. Kirpotin, D. B.; Drummond, D. C.; Shao, Y.; Shalaby, M. R.; Hong, K. L.; Nielsen, U. B.; Marks, J. D.; Benz, C. C.; Park, J. W., Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 2006, 66 (13), 6732-6740.
13. Crowe, L. M.; Crowe, J. H.; Rudolph, A.; Womersley, C.; Appel, L., PRESERVATION OF FREEZE-DRIED LIPOSOMES BY TREHALOSE. Archives of Biochemistry and Biophysics 1985, 242 (1), 240-247.
14. Lukyanov, A. N.; Elbayoumi, T. A.; Chakilam, A. R.; Torchilin, V. P., Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. Journal of Controlled Release 2004, 100 (1), 135-144.
15. Sanchez, M.; Aranda, F. J.; Teruel, J. A.; Ortiz, A., New pH-sensitive liposomes containing phosphatidylethanolamine and a bacterial dirhamnolipid. Chem. Phys. Lipids 2011, 164 (1), 16-23.
16. Debentzmann, S. G.; Bajoletlaudinat, O.; Dupuit, F.; Pierrot, D.; Fuchey, C.; Plotkowski, M. C.; Puchelle, E., PROTECTION OF HUMAN RESPIRATORY EPITHELIUM FROM PSEUDOMONAS-AERUGINOSA ADHERENCE BY PHOSPHATIDYLGLYCEROL LIPOSOMES. Infection and Immunity 1994, 62 (2), 704-708.
17. Bigon, E.; Boarato, E.; Bruni, A.; Leon, A.; Toffano, G., PHARMACOLOGICAL EFFECTS OF PHOSPHATIDYLSERINE LIPOSOMES - ROLE OF LYSOPHOSPHATIDYLSERINE. British Journal of Pharmacology 1979, 67 (4), 611-616.
18. Wu, Z.; Ma, H. M.; Kukita, T.; Nakanishi, Y.; Nakanishi, H., Phosphatidylserine-Containing Liposomes Inhibit the Differentiation of Osteoclasts and Trabecular Bone Loss. Journal of Immunology 2010, 184 (6), 3191-3201.
19. Degier, J.; Mandersloot, J. G.; Vandeene.Ll, LIPID COMPOSITION AND PERMEABILITY OF LIPOSOMES. Biochim. Biophys. Acta 1968, 150 (4), 666-+.
20. Kirby, C.; Clarke, J.; Gregoriadis, G., EFFECT OF THE CHOLESTEROL CONTENT OF SMALL UNILAMELLAR LIPOSOMES ON THEIR STABILITY INVIVO AND INVITRO. Biochemical Journal 1980, 186 (2), 591-598.
21. Qin, J.; Chen, D.; Lu, W.; Xu, H.; Yan, C.; Hu, H.; Chen, B.; Qiao, M.; Zhao, X., Preparation, characterization, and evaluation of liposomal ferulic acid in vitro and in vivo. Drug Development and Industrial Pharmacy 2008, 34 (6), 602-608.
22. Cabanes, A.; Tzemach, D.; Goren, D.; Horowitz, A. T.; Gabizon, A., Comparative study of the antitumor activity of free doxorubicin and polyethylene glycol-coated liposomal doxorubicin in a mouse lymphoma model. Clinical Cancer Research 1998, 4 (2), 499-505.
23. Papahadjopoulos, D.; Allen, T. M.; Gabizon, A.; Mayhew, E.; Matthay, K.; Huang, S. K.; Lee, K. D.; Woodle, M. C.; Lasic, D. D.; Redemann, C.; Martin, F. J., STERICALLY STABILIZED LIPOSOMES - IMPROVEMENTS IN PHARMACOKINETICS AND ANTITUMOR THERAPEUTIC EFFICACY. Proc. Natl. Acad. Sci. U. S. A. 1991, 88 (24), 11460-11464.
24. Milla, P.; Dosio, F.; Cattel, L., PEGylation of Proteins and Liposomes: a Powerful and Flexible Strategy to Improve the Drug Delivery. Curr. Drug Metab. 2012, 13 (1), 105-119.
25. Crosasso, P.; Ceruti, M.; Brusa, P.; Arpicco, S.; Dosio, F.; Cattel, L., Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. Journal of Controlled Release 2000, 63 (1–2), 19-30.
26. Haran, G.; Cohen, R.; Bar, L. K.; Barenholz, Y., TRANSMEMBRANE AMMONIUM-SULFATE GRADIENTS IN LIPOSOMES PRODUCE EFFICIENT AND STABLE ENTRAPMENT OF AMPHIPATHIC WEAK BASES. Biochim. Biophys. Acta 1993, 1151 (2), 201-215.
27. Madden, T. D.; Harrigan, P. R.; Tai, L. C. L.; Bally, M. B.; Mayer, L. D.; Redelmeier, T. E.; Loughrey, H. C.; Tilcock, C. P. S.; Reinish, L. W.; Cullis, P. R., THE ACCUMULATION OF DRUGS WITHIN LARGE UNILAMELLAR VESICLES EXHIBITING A PROTON GRADIENT - A SURVEY. Chem. Phys. Lipids 1990, 53 (1), 37-46.
28. Forssen, E. A.; Coulter, D. M.; Proffitt, R. T., Selective in Vivo Localization of Daunorubicin Small Unilamellar Vesicles in Solid Tumors. Cancer Res. 1992, 52 (12), 3255-3261.
29. Fritze, A.; Hens, F.; Kimpfler, A.; Schubert, R.; Peschka-Suss, R., Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochimica et Biophysica Acta (BBA) - Biomembranes 2006, 1758 (10), 1633-1640.
30. Tu, S.; McGinnis, T.; Krugner-Higby, L.; Heath, T. D., A Mathematical Relationship for Hydromorphone Loading into Liposomes with Trans-Membrane Ammonium Sulfate Gradients. J. Pharm. Sci. 2010, 99 (6), 2672-2680.
31. Zhigaltsev, I. V.; Winters, G.; Srinivasulu, M.; Crawford, J.; Wong, M.; Amankwa, L.; Waterhouse, D.; Masin, D.; Webb, M.; Harasym, N.; Heller, L.; Bally, M. B.; Ciufolini, M. A.; Cullis, P. R.; Maurer, N., Development of a weak-base docetaxel derivative that can be loaded into lipid nanoparticles. Journal of Controlled Release 2010, 144 (3), 332-340.
32. Li, C.; Cui, J.; Li, Y.; Wang, C.; Li, Y.; Zhang, L.; Zhang, L.; Guo, W.; Wang, J.; Zhang, H.; Hao, Y.; Wang, Y., Copper ion-mediated liposomal encapsulation of mitoxantrone: The role of anions in drug loading, retention and release. European Journal of Pharmaceutical Sciences 2008, 34 (4–5), 333-344.
33. Clerc, S.; Barenholz, Y., Loading of amphipathic weak acids into liposomes in response to transmembrane calcium acetate gradients. Biochimica et Biophysica Acta (BBA) - Biomembranes 1995, 1240 (2), 257-265.
34. Zhigaltsev, I. V.; Maurer, N.; Akhong, Q. F.; Leone, R.; Leng, E.; Wang, J.; Semple, S. C.; Cullis, P. R., Liposome-encapsulated vincristine, vinblastine and vinorelbine: A comparative study of drug loading and retention. Journal of Controlled Release 2005, 104 (1), 103-111.
35. Avnir, Y.; Ulmansky, R.; Wasserman, V.; Even-Chen, S.; Broyer, M.; Barenholz, Y.; Naparstek, Y., Amphipathic weak acid glucocorticoid prodrugs remote-loaded into sterically stabilized nanoliposomes evaluated in arthritic rats and in a Beagle dog: A novel approach to treating autoimmune arthritis. Arthritis & Rheumatism 2008, 58 (1), 119-129.
36. Tardi, P. G.; Gallagher, R. C.; Johnstone, S.; Harasym, N.; Webb, M.; Bally, M. B.; Mayer, L. D., Coencapsulation of irinotecan and floxuridine into low cholesterol-containing liposomes that coordinate drug release in vivo. Biochimica et Biophysica Acta (BBA) - Biomembranes 2007, 1768 (3), 678-687.
37. Drummond, D. C.; Noble, C. O.; Guo, Z. X.; Hong, K.; Park, J. W.; Kirpotin, D. B., Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy. Cancer Res. 2006, 66 (6), 3271-3277.
38. Noble, C. O.; Guo, Z.; Hayes, M. E.; Marks, J. D.; Park, J. W.; Benz, C. C.; Kirpotin, D. B.; Drummond, D. C., Characterization of highly stable liposomal and immunoliposomal formulations of vincristine and vinblastine. Cancer Chemotherapy and Pharmacology 2009, 64 (4), 741-751.
39. Yellon, D. M.; Hausenloy, D. J., Myocardial Reperfusion Injury. New England Journal of Medicine 2007, 357 (11), 1121-1135.
40. Dirksen, M. T.; Laarman, G. J.; Simoons, M. L.; Duncker, D., Reperfusion injury in humans: A review of clinical trials on reperfusion injury inhibitory strategies. Cardiovascular Research 2007, 74 (3), 343-355.
41. Loor, G.; Schumacker, P. T., Role of hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion. Cell Death and Differentiation 2008, 15 (4), 686-690.
42. Hill, P.; Shukla, D.; Tran, M. G. B.; Aragones, J.; Cook, H. T.; Carmeliet, P.; Maxwell, P. H., Inhibition of Hypoxia Inducible Factor Hydroxylases Protects Against Renal Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology : JASN 2008, 19 (1), 39-46.
43. Semenza, G. L., Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003, 3 (10), 721-732.
44. Cuzzocrea, S.; McDonald, M. C.; Mazzon, E.; Siriwardena, D.; Costantino, G.; Fulia, F.; Cucinotta, G.; Gitto, E.; Cordaro, S.; Barberi, I.; De Sarro, A.; Caputi, A. P.; Thiemermann, C., Effects of tempol, a membrane-permeable radical scavenger, in a gerbil model of brain injury. Brain Research 2000, 875 (1–2), 96-106.
45. Wasserman, V.; Kizelsztein, P.; Garbuzenko, O.; Kohen, R.; Ovadia, H.; Tabakman, R.; Barenholz, Y., The antioxidant tempamine: In vitro antitumor and neuroprotective effects and optimization of liposomal encapsulation and release. Langmuir 2007, 23 (4), 1937-1947.
46. Zhang, Y.; Desai, A.; Yang, S. Y.; Bae, K. B.; Antczak, M. I.; Fink, S. P.; Tiwari, S.; Willis, J. E.; Williams, N. S.; Dawson, D. M.; Wald, D.; Chen, W.-D.; Wang, Z.; Kasturi, L.; Larusch, G. A.; He, L.; Cominelli, F.; Di Martino, L.; Djuric, Z.; Milne, G. L.; Chance, M.; Sanabria, J.; Dealwis, C.; Mikkola, D.; Naidoo, J.; Wei, S.; Tai, H.-H.; Gerson, S. L.; Ready, J. M.; Posner, B.; Willson, J. K. V.; Markowitz, S. D., Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration. Science 2015, 348 (6240).
47. Xiao, C.-Y.; Yuhki, K.-i.; Hara, A.; Fujino, T.; Kuriyama, S.; Yamada, T.; Takayama, K.; Takahata, O.; Karibe, H.; Taniguchi, T.; Narumiya, S.; Ushikubi, F., Prostaglandin E2 Protects the Heart From Ischemia-Reperfusion Injury via Its Receptor Subtype EP4. Circulation 2004, 109 (20), 2462-2468.
48. Hwang, H. S.; Yang, K. J.; Park, K. C.; Choi, H. S.; Kim, S. H.; Hong, S. Y.; Jeon, B. H.; Chang, Y. K.; Park, C. W.; Kim, S. Y.; Lee, S. J.; Yang, C. W., Pretreatment with paricalcitol attenuates inflammation in ischemia–reperfusion injury via the up-regulation of cyclooxygenase-2 and prostaglandin E2. Nephrology Dialysis Transplantation 2013, 28 (5), 1156-1166.
49. Weinstein, J.; Yoshikami, S.; Henkart, P.; Blumenthal, R.; Hagins, W., Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker. Science 1977, 195 (4277), 489-492.
50. Claassen, E., Post-formation fluorescent labelling of liposomal membranes. Journal of Immunological Methods 1992, 147 (2), 231-240.
51. Weissleder, R., A clearer vision for in vivo imaging. Nat Biotech 2001, 19 (4), 316-317.
52. Bisby, R. H.; Mead, C.; Morgan, C. G., Active uptake of drugs into photosensitive liposomes and rapid release on UV photolysis. Photochemistry and Photobiology 2000, 72 (1), 57-61.
53. Sur, S.; Fries, A. C.; Kinzler, K. W.; Zhou, S. B.; Vogelstein, B., Remote loading of preencapsulated drugs into stealth liposomes. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (6), 2283-2288.
54. Weissleder, R.; Ntziachristos, V., Shedding light onto live molecular targets. Nat Med 2003, 9 (1), 123-128.
55. Proulx, S. T.; Luciani, P.; Derzsi, S.; Rinderknecht, M.; Mumprecht, V.; Leroux, J. C.; Detmar, M., Quantitative Imaging of Lymphatic Function with Liposomal Indocyanine Green. Cancer Res. 2010, 70 (18), 7053-7062.
56. Hirai, M.; Minematsu, H.; Kondo, N.; Oie, K.; Igarashi, K.; Yamazaki, N., Accumulation of liposome with Sialyl Lewis X to inflammation and tumor region: Application to in vivo bio-imaging. Biochemical and Biophysical Research Communications 2007, 353 (3), 553-558.
57. Method for diagnosing or treating tumors using sphingomyelin containing liposomes. Google Patents: 2014.
58. Lajunen, T.; Kontturi, L. S.; Viitala, L.; Manna, M.; Cramariuc, O.; Rog, T.; Bunker, A.; Laaksonen, T.; Viitala, T.; Murtomaki, L.; Urtti, A., Indocyanine Green-Loaded Liposomes for Light-Triggered Drug Release. Molecular Pharmaceutics 2016, 13 (6), 2095-2107.
59. Tansi, F. L.; Ruger, R.; Rabenhold, M.; Steiniger, F.; Fahr, A.; Kaiser, W. A.; Hilger, I., Liposomal Encapsulation of a Near-Infrared Fluorophore Enhances Fluorescence Quenching and Reliable Whole Body Optical Imaging Upon Activation In Vivo. Small 2013, 9 (21), 3659-3669.
60. Holzer, W.; Mauerer, M.; Penzkofer, A.; Szeimies, R. M.; Abels, C.; Landthaler, M.; Baumler, W., Photostability and thermal stability of indocyanine green. Journal of Photochemistry and Photobiology B-Biology 1998, 47 (2-3), 155-164.
61. Mordon, S. R.; Desmettre, T.; Devoisselle, J.-M.; Soulie-Begu, S. In Thermal damage assessment of blood vessels in a hamster skin flap model by fluorescence measurement of a liposome-dye system, BiOS′97, Part of Photonics West, International Society for Optics and Photonics: 1997; pp 20-31.
62. Fernandez-Fernandez, A.; Manchanda, R.; Lei, T.; Carvajal, D. A.; Tang, Y.; Kazmi, S. Z. R.; McGoron, A. J., Comparative Study of the Optical and Heat Generation Properties of IR820 and Indocyanine Green. Molecular Imaging 2012, 11 (2), 99-113.
63. MacDonald, R. C.; MacDonald, R. I.; Menco, B. P. M.; Takeshita, K.; Subbarao, N. K.; Hu, L.-r., Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochimica et Biophysica Acta (BBA) - Biomembranes 1991, 1061 (2), 297-303.
64. Chen, P. S.; Toribara, T. Y.; Warner, H., MICRODETERMINATION OF PHOSPHORUS. Anal. Chem. 1956, 28 (11), 1756-1758.
65. Zucker, D.; Marcus, D.; Barenholz, Y.; Goldblum, A., Liposome drugs′ loading efficiency: A working model based on loading conditions and drug′s physicochemical properties. Journal of Controlled Release 2009, 139 (1), 73-80.
66. Shibata, H.; Yomota, C.; Okuda, H., Simultaneous Determination of Polyethylene Glycol-Conjugated Liposome Components by Using Reversed-Phase High-Performance Liquid Chromatography with UV and Evaporative Light Scattering Detection. Aaps Pharmscitech 2013, 14 (2), 811-817.
67. Johnston, M. J. W.; Edwards, K.; Karlsson, G.; Cullis, P. R., Influence of drug-to-lipid ratio on drug release properties and liposome integrity in liposomal doxorubicin formulations. Journal of Liposome Research 2008, 18 (2), 145-157.
68. Avnir, Y.; Ulmansky, R.; Wasserman, V.; Even-Chen, S.; Broyer, M.; Barenholz, Y.; Naparstek, Y., Amphipathic weak acid glucocorticoid Prodrugs remote-loaded into sterically stabilized nanoliposomes evaluated in arthritic rats and in a beagle dog. Arthritis and Rheumatism 2008, 58 (1), 119-129.
69. Chen, J.; Lu, W. L.; Gu, W.; Lu, S. S.; Chen, Z. P.; Cai, B. C.; Yang, X. X., Drug-in-cyclodextrin-inliposomes: a promising delivery system for hydrophobic drugs. Expert Opinion on Drug Delivery 2014, 11 (4), 565-577.
70. Zhang, W. L.; Wang, G. J.; Falconer, J. R.; Baguley, B. C.; Shaw, J. P.; Liu, J. P.; Xu, H. T.; See, E.; Sun, J. G.; Aa, J. Y.; Wu, Z. M., Strategies to Maximize Liposomal Drug Loading for a Poorly Water-soluble Anticancer Drug. Pharmaceutical Research 2015, 32 (4), 1451-1461.
71. Modi, S.; Xiang, T. X.; Anderson, B. D., Enhanced active liposomal loading of a poorly soluble ionizable drug using supersaturated drug solutions. Journal of Controlled Release 2012, 162 (2), 330-339.
72. Wang, M.; Kim, J.-C., Light- and temperature-responsive liposomes incorporating cinnamoyl Pluronic F127. Int. J. Pharm. 2014, 468 (1–2), 243-249.
73. Schroeder, A.; Kost, J.; Barenholz, Y., Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem. Phys. Lipids 2009, 162 (1-2), 1-16.
74. Chen, K.-J.; Liang, H.-F.; Chen, H.-L.; Wang, Y.; Cheng, P.-Y.; Liu, H.-L.; Xia, Y.; Sung, H.-W., A Thermoresponsive Bubble-Generating Liposomal System for Triggering Localized Extracellular Drug Delivery. ACS Nano 2013, 7 (1), 438-446.
75. Banerjee, J.; Hanson, A. J.; Gadam, B.; Elegbede, A. I.; Tobwala, S.; Ganguly, B.; Wagh, A. V.; Muhonen, W. W.; Law, B.; Shabb, J. B.; Srivastava, D. K.; Mallik, S., Release of Liposomal Contents by Cell-Secreted Matrix Metalloproteinase-9. Bioconjugate Chem. 2009, 20 (7), 1332-1339.

指導教授 謝發坤、李賢明(Fa-Kuen Shieh Hsieng-Ming Lee) 審核日期 2017-3-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明