參考文獻 |
1. Torchilin, V. P., Multifunctional nanocarriers. Advanced Drug Delivery Reviews 2012, 64, Supplement, 302-315.
2. Needham, D.; Anyarambhatla, G.; Kong, G.; Dewhirst, M. W., A new temperature-sensitive liposome for use with mild hyperthermia: Characterization and testing in a human tumor xenograft model. Cancer Res. 2000, 60 (5), 1197-1201.
3. Grull, H.; Langereis, S., Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. Journal of Controlled Release 2012, 161 (2), 317-327.
4. Lee, S. M.; Chen, H.; Dettmer, C. M.; O′Halloran, T. V.; Nguyen, S. T., Polymer-caged lipsomes: A pH-Responsive delivery system with high stability. J. Am. Chem. Soc. 2007, 129 (49), 15096-+.
5. Lozano, N.; Al-Ahmady, Z. S.; Beziere, N. S.; Ntziachristos, V.; Kostarelos, K., Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. Int. J. Pharm. 2015, 482 (1-2), 2-10.
6. Prabhu, P.; Shetty, R.; Koland, M.; Vijayanarayana, K.; Vijayalakshmi, K. K.; Nairy, M. H.; Nisha, G. S., Investigation of nano lipid vesicles of methotrexate for anti-rheumatoid activity. Int. J. Nanomed. 2012, 7, 177-186.
7. Barenholz, Y., Doxil (R) - The first FDA-approved nano-drug: Lessons learned. Journal of Controlled Release 2012, 160 (2), 117-134.
8. Bangham, A. D.; Horne, R. W., Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. Journal of Molecular Biology 1964, 8 (5), 660-IN10.
9. Sessa, G.; Weissmann, G., INCORPORATION OF LYSOZYME INTO LIPOSOMES - A MODEL FOR STRUCTURE-LINKED LATENCY. J. Biol. Chem. 1970, 245 (13), 3295-+.
10. Gregoriadis , G., The Carrier Potential of Liposomes in Biology and Medicine. New England Journal of Medicine 1976, 295 (13), 704-710.
11. Farokhzad, O. C.; Jon, S. Y.; Khademhosseini, A.; Tran, T. N. T.; LaVan, D. A.; Langer, R., Nanopartide-aptamer bioconjugates: A new approach for targeting prostate cancer cells. Cancer Res. 2004, 64 (21), 7668-7672.
12. Kirpotin, D. B.; Drummond, D. C.; Shao, Y.; Shalaby, M. R.; Hong, K. L.; Nielsen, U. B.; Marks, J. D.; Benz, C. C.; Park, J. W., Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 2006, 66 (13), 6732-6740.
13. Crowe, L. M.; Crowe, J. H.; Rudolph, A.; Womersley, C.; Appel, L., PRESERVATION OF FREEZE-DRIED LIPOSOMES BY TREHALOSE. Archives of Biochemistry and Biophysics 1985, 242 (1), 240-247.
14. Lukyanov, A. N.; Elbayoumi, T. A.; Chakilam, A. R.; Torchilin, V. P., Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. Journal of Controlled Release 2004, 100 (1), 135-144.
15. Sanchez, M.; Aranda, F. J.; Teruel, J. A.; Ortiz, A., New pH-sensitive liposomes containing phosphatidylethanolamine and a bacterial dirhamnolipid. Chem. Phys. Lipids 2011, 164 (1), 16-23.
16. Debentzmann, S. G.; Bajoletlaudinat, O.; Dupuit, F.; Pierrot, D.; Fuchey, C.; Plotkowski, M. C.; Puchelle, E., PROTECTION OF HUMAN RESPIRATORY EPITHELIUM FROM PSEUDOMONAS-AERUGINOSA ADHERENCE BY PHOSPHATIDYLGLYCEROL LIPOSOMES. Infection and Immunity 1994, 62 (2), 704-708.
17. Bigon, E.; Boarato, E.; Bruni, A.; Leon, A.; Toffano, G., PHARMACOLOGICAL EFFECTS OF PHOSPHATIDYLSERINE LIPOSOMES - ROLE OF LYSOPHOSPHATIDYLSERINE. British Journal of Pharmacology 1979, 67 (4), 611-616.
18. Wu, Z.; Ma, H. M.; Kukita, T.; Nakanishi, Y.; Nakanishi, H., Phosphatidylserine-Containing Liposomes Inhibit the Differentiation of Osteoclasts and Trabecular Bone Loss. Journal of Immunology 2010, 184 (6), 3191-3201.
19. Degier, J.; Mandersloot, J. G.; Vandeene.Ll, LIPID COMPOSITION AND PERMEABILITY OF LIPOSOMES. Biochim. Biophys. Acta 1968, 150 (4), 666-+.
20. Kirby, C.; Clarke, J.; Gregoriadis, G., EFFECT OF THE CHOLESTEROL CONTENT OF SMALL UNILAMELLAR LIPOSOMES ON THEIR STABILITY INVIVO AND INVITRO. Biochemical Journal 1980, 186 (2), 591-598.
21. Qin, J.; Chen, D.; Lu, W.; Xu, H.; Yan, C.; Hu, H.; Chen, B.; Qiao, M.; Zhao, X., Preparation, characterization, and evaluation of liposomal ferulic acid in vitro and in vivo. Drug Development and Industrial Pharmacy 2008, 34 (6), 602-608.
22. Cabanes, A.; Tzemach, D.; Goren, D.; Horowitz, A. T.; Gabizon, A., Comparative study of the antitumor activity of free doxorubicin and polyethylene glycol-coated liposomal doxorubicin in a mouse lymphoma model. Clinical Cancer Research 1998, 4 (2), 499-505.
23. Papahadjopoulos, D.; Allen, T. M.; Gabizon, A.; Mayhew, E.; Matthay, K.; Huang, S. K.; Lee, K. D.; Woodle, M. C.; Lasic, D. D.; Redemann, C.; Martin, F. J., STERICALLY STABILIZED LIPOSOMES - IMPROVEMENTS IN PHARMACOKINETICS AND ANTITUMOR THERAPEUTIC EFFICACY. Proc. Natl. Acad. Sci. U. S. A. 1991, 88 (24), 11460-11464.
24. Milla, P.; Dosio, F.; Cattel, L., PEGylation of Proteins and Liposomes: a Powerful and Flexible Strategy to Improve the Drug Delivery. Curr. Drug Metab. 2012, 13 (1), 105-119.
25. Crosasso, P.; Ceruti, M.; Brusa, P.; Arpicco, S.; Dosio, F.; Cattel, L., Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. Journal of Controlled Release 2000, 63 (1–2), 19-30.
26. Haran, G.; Cohen, R.; Bar, L. K.; Barenholz, Y., TRANSMEMBRANE AMMONIUM-SULFATE GRADIENTS IN LIPOSOMES PRODUCE EFFICIENT AND STABLE ENTRAPMENT OF AMPHIPATHIC WEAK BASES. Biochim. Biophys. Acta 1993, 1151 (2), 201-215.
27. Madden, T. D.; Harrigan, P. R.; Tai, L. C. L.; Bally, M. B.; Mayer, L. D.; Redelmeier, T. E.; Loughrey, H. C.; Tilcock, C. P. S.; Reinish, L. W.; Cullis, P. R., THE ACCUMULATION OF DRUGS WITHIN LARGE UNILAMELLAR VESICLES EXHIBITING A PROTON GRADIENT - A SURVEY. Chem. Phys. Lipids 1990, 53 (1), 37-46.
28. Forssen, E. A.; Coulter, D. M.; Proffitt, R. T., Selective in Vivo Localization of Daunorubicin Small Unilamellar Vesicles in Solid Tumors. Cancer Res. 1992, 52 (12), 3255-3261.
29. Fritze, A.; Hens, F.; Kimpfler, A.; Schubert, R.; Peschka-Suss, R., Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochimica et Biophysica Acta (BBA) - Biomembranes 2006, 1758 (10), 1633-1640.
30. Tu, S.; McGinnis, T.; Krugner-Higby, L.; Heath, T. D., A Mathematical Relationship for Hydromorphone Loading into Liposomes with Trans-Membrane Ammonium Sulfate Gradients. J. Pharm. Sci. 2010, 99 (6), 2672-2680.
31. Zhigaltsev, I. V.; Winters, G.; Srinivasulu, M.; Crawford, J.; Wong, M.; Amankwa, L.; Waterhouse, D.; Masin, D.; Webb, M.; Harasym, N.; Heller, L.; Bally, M. B.; Ciufolini, M. A.; Cullis, P. R.; Maurer, N., Development of a weak-base docetaxel derivative that can be loaded into lipid nanoparticles. Journal of Controlled Release 2010, 144 (3), 332-340.
32. Li, C.; Cui, J.; Li, Y.; Wang, C.; Li, Y.; Zhang, L.; Zhang, L.; Guo, W.; Wang, J.; Zhang, H.; Hao, Y.; Wang, Y., Copper ion-mediated liposomal encapsulation of mitoxantrone: The role of anions in drug loading, retention and release. European Journal of Pharmaceutical Sciences 2008, 34 (4–5), 333-344.
33. Clerc, S.; Barenholz, Y., Loading of amphipathic weak acids into liposomes in response to transmembrane calcium acetate gradients. Biochimica et Biophysica Acta (BBA) - Biomembranes 1995, 1240 (2), 257-265.
34. Zhigaltsev, I. V.; Maurer, N.; Akhong, Q. F.; Leone, R.; Leng, E.; Wang, J.; Semple, S. C.; Cullis, P. R., Liposome-encapsulated vincristine, vinblastine and vinorelbine: A comparative study of drug loading and retention. Journal of Controlled Release 2005, 104 (1), 103-111.
35. Avnir, Y.; Ulmansky, R.; Wasserman, V.; Even-Chen, S.; Broyer, M.; Barenholz, Y.; Naparstek, Y., Amphipathic weak acid glucocorticoid prodrugs remote-loaded into sterically stabilized nanoliposomes evaluated in arthritic rats and in a Beagle dog: A novel approach to treating autoimmune arthritis. Arthritis & Rheumatism 2008, 58 (1), 119-129.
36. Tardi, P. G.; Gallagher, R. C.; Johnstone, S.; Harasym, N.; Webb, M.; Bally, M. B.; Mayer, L. D., Coencapsulation of irinotecan and floxuridine into low cholesterol-containing liposomes that coordinate drug release in vivo. Biochimica et Biophysica Acta (BBA) - Biomembranes 2007, 1768 (3), 678-687.
37. Drummond, D. C.; Noble, C. O.; Guo, Z. X.; Hong, K.; Park, J. W.; Kirpotin, D. B., Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy. Cancer Res. 2006, 66 (6), 3271-3277.
38. Noble, C. O.; Guo, Z.; Hayes, M. E.; Marks, J. D.; Park, J. W.; Benz, C. C.; Kirpotin, D. B.; Drummond, D. C., Characterization of highly stable liposomal and immunoliposomal formulations of vincristine and vinblastine. Cancer Chemotherapy and Pharmacology 2009, 64 (4), 741-751.
39. Yellon, D. M.; Hausenloy, D. J., Myocardial Reperfusion Injury. New England Journal of Medicine 2007, 357 (11), 1121-1135.
40. Dirksen, M. T.; Laarman, G. J.; Simoons, M. L.; Duncker, D., Reperfusion injury in humans: A review of clinical trials on reperfusion injury inhibitory strategies. Cardiovascular Research 2007, 74 (3), 343-355.
41. Loor, G.; Schumacker, P. T., Role of hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion. Cell Death and Differentiation 2008, 15 (4), 686-690.
42. Hill, P.; Shukla, D.; Tran, M. G. B.; Aragones, J.; Cook, H. T.; Carmeliet, P.; Maxwell, P. H., Inhibition of Hypoxia Inducible Factor Hydroxylases Protects Against Renal Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology : JASN 2008, 19 (1), 39-46.
43. Semenza, G. L., Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003, 3 (10), 721-732.
44. Cuzzocrea, S.; McDonald, M. C.; Mazzon, E.; Siriwardena, D.; Costantino, G.; Fulia, F.; Cucinotta, G.; Gitto, E.; Cordaro, S.; Barberi, I.; De Sarro, A.; Caputi, A. P.; Thiemermann, C., Effects of tempol, a membrane-permeable radical scavenger, in a gerbil model of brain injury. Brain Research 2000, 875 (1–2), 96-106.
45. Wasserman, V.; Kizelsztein, P.; Garbuzenko, O.; Kohen, R.; Ovadia, H.; Tabakman, R.; Barenholz, Y., The antioxidant tempamine: In vitro antitumor and neuroprotective effects and optimization of liposomal encapsulation and release. Langmuir 2007, 23 (4), 1937-1947.
46. Zhang, Y.; Desai, A.; Yang, S. Y.; Bae, K. B.; Antczak, M. I.; Fink, S. P.; Tiwari, S.; Willis, J. E.; Williams, N. S.; Dawson, D. M.; Wald, D.; Chen, W.-D.; Wang, Z.; Kasturi, L.; Larusch, G. A.; He, L.; Cominelli, F.; Di Martino, L.; Djuric, Z.; Milne, G. L.; Chance, M.; Sanabria, J.; Dealwis, C.; Mikkola, D.; Naidoo, J.; Wei, S.; Tai, H.-H.; Gerson, S. L.; Ready, J. M.; Posner, B.; Willson, J. K. V.; Markowitz, S. D., Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration. Science 2015, 348 (6240).
47. Xiao, C.-Y.; Yuhki, K.-i.; Hara, A.; Fujino, T.; Kuriyama, S.; Yamada, T.; Takayama, K.; Takahata, O.; Karibe, H.; Taniguchi, T.; Narumiya, S.; Ushikubi, F., Prostaglandin E2 Protects the Heart From Ischemia-Reperfusion Injury via Its Receptor Subtype EP4. Circulation 2004, 109 (20), 2462-2468.
48. Hwang, H. S.; Yang, K. J.; Park, K. C.; Choi, H. S.; Kim, S. H.; Hong, S. Y.; Jeon, B. H.; Chang, Y. K.; Park, C. W.; Kim, S. Y.; Lee, S. J.; Yang, C. W., Pretreatment with paricalcitol attenuates inflammation in ischemia–reperfusion injury via the up-regulation of cyclooxygenase-2 and prostaglandin E2. Nephrology Dialysis Transplantation 2013, 28 (5), 1156-1166.
49. Weinstein, J.; Yoshikami, S.; Henkart, P.; Blumenthal, R.; Hagins, W., Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker. Science 1977, 195 (4277), 489-492.
50. Claassen, E., Post-formation fluorescent labelling of liposomal membranes. Journal of Immunological Methods 1992, 147 (2), 231-240.
51. Weissleder, R., A clearer vision for in vivo imaging. Nat Biotech 2001, 19 (4), 316-317.
52. Bisby, R. H.; Mead, C.; Morgan, C. G., Active uptake of drugs into photosensitive liposomes and rapid release on UV photolysis. Photochemistry and Photobiology 2000, 72 (1), 57-61.
53. Sur, S.; Fries, A. C.; Kinzler, K. W.; Zhou, S. B.; Vogelstein, B., Remote loading of preencapsulated drugs into stealth liposomes. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (6), 2283-2288.
54. Weissleder, R.; Ntziachristos, V., Shedding light onto live molecular targets. Nat Med 2003, 9 (1), 123-128.
55. Proulx, S. T.; Luciani, P.; Derzsi, S.; Rinderknecht, M.; Mumprecht, V.; Leroux, J. C.; Detmar, M., Quantitative Imaging of Lymphatic Function with Liposomal Indocyanine Green. Cancer Res. 2010, 70 (18), 7053-7062.
56. Hirai, M.; Minematsu, H.; Kondo, N.; Oie, K.; Igarashi, K.; Yamazaki, N., Accumulation of liposome with Sialyl Lewis X to inflammation and tumor region: Application to in vivo bio-imaging. Biochemical and Biophysical Research Communications 2007, 353 (3), 553-558.
57. Method for diagnosing or treating tumors using sphingomyelin containing liposomes. Google Patents: 2014.
58. Lajunen, T.; Kontturi, L. S.; Viitala, L.; Manna, M.; Cramariuc, O.; Rog, T.; Bunker, A.; Laaksonen, T.; Viitala, T.; Murtomaki, L.; Urtti, A., Indocyanine Green-Loaded Liposomes for Light-Triggered Drug Release. Molecular Pharmaceutics 2016, 13 (6), 2095-2107.
59. Tansi, F. L.; Ruger, R.; Rabenhold, M.; Steiniger, F.; Fahr, A.; Kaiser, W. A.; Hilger, I., Liposomal Encapsulation of a Near-Infrared Fluorophore Enhances Fluorescence Quenching and Reliable Whole Body Optical Imaging Upon Activation In Vivo. Small 2013, 9 (21), 3659-3669.
60. Holzer, W.; Mauerer, M.; Penzkofer, A.; Szeimies, R. M.; Abels, C.; Landthaler, M.; Baumler, W., Photostability and thermal stability of indocyanine green. Journal of Photochemistry and Photobiology B-Biology 1998, 47 (2-3), 155-164.
61. Mordon, S. R.; Desmettre, T.; Devoisselle, J.-M.; Soulie-Begu, S. In Thermal damage assessment of blood vessels in a hamster skin flap model by fluorescence measurement of a liposome-dye system, BiOS′97, Part of Photonics West, International Society for Optics and Photonics: 1997; pp 20-31.
62. Fernandez-Fernandez, A.; Manchanda, R.; Lei, T.; Carvajal, D. A.; Tang, Y.; Kazmi, S. Z. R.; McGoron, A. J., Comparative Study of the Optical and Heat Generation Properties of IR820 and Indocyanine Green. Molecular Imaging 2012, 11 (2), 99-113.
63. MacDonald, R. C.; MacDonald, R. I.; Menco, B. P. M.; Takeshita, K.; Subbarao, N. K.; Hu, L.-r., Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochimica et Biophysica Acta (BBA) - Biomembranes 1991, 1061 (2), 297-303.
64. Chen, P. S.; Toribara, T. Y.; Warner, H., MICRODETERMINATION OF PHOSPHORUS. Anal. Chem. 1956, 28 (11), 1756-1758.
65. Zucker, D.; Marcus, D.; Barenholz, Y.; Goldblum, A., Liposome drugs′ loading efficiency: A working model based on loading conditions and drug′s physicochemical properties. Journal of Controlled Release 2009, 139 (1), 73-80.
66. Shibata, H.; Yomota, C.; Okuda, H., Simultaneous Determination of Polyethylene Glycol-Conjugated Liposome Components by Using Reversed-Phase High-Performance Liquid Chromatography with UV and Evaporative Light Scattering Detection. Aaps Pharmscitech 2013, 14 (2), 811-817.
67. Johnston, M. J. W.; Edwards, K.; Karlsson, G.; Cullis, P. R., Influence of drug-to-lipid ratio on drug release properties and liposome integrity in liposomal doxorubicin formulations. Journal of Liposome Research 2008, 18 (2), 145-157.
68. Avnir, Y.; Ulmansky, R.; Wasserman, V.; Even-Chen, S.; Broyer, M.; Barenholz, Y.; Naparstek, Y., Amphipathic weak acid glucocorticoid Prodrugs remote-loaded into sterically stabilized nanoliposomes evaluated in arthritic rats and in a beagle dog. Arthritis and Rheumatism 2008, 58 (1), 119-129.
69. Chen, J.; Lu, W. L.; Gu, W.; Lu, S. S.; Chen, Z. P.; Cai, B. C.; Yang, X. X., Drug-in-cyclodextrin-inliposomes: a promising delivery system for hydrophobic drugs. Expert Opinion on Drug Delivery 2014, 11 (4), 565-577.
70. Zhang, W. L.; Wang, G. J.; Falconer, J. R.; Baguley, B. C.; Shaw, J. P.; Liu, J. P.; Xu, H. T.; See, E.; Sun, J. G.; Aa, J. Y.; Wu, Z. M., Strategies to Maximize Liposomal Drug Loading for a Poorly Water-soluble Anticancer Drug. Pharmaceutical Research 2015, 32 (4), 1451-1461.
71. Modi, S.; Xiang, T. X.; Anderson, B. D., Enhanced active liposomal loading of a poorly soluble ionizable drug using supersaturated drug solutions. Journal of Controlled Release 2012, 162 (2), 330-339.
72. Wang, M.; Kim, J.-C., Light- and temperature-responsive liposomes incorporating cinnamoyl Pluronic F127. Int. J. Pharm. 2014, 468 (1–2), 243-249.
73. Schroeder, A.; Kost, J.; Barenholz, Y., Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem. Phys. Lipids 2009, 162 (1-2), 1-16.
74. Chen, K.-J.; Liang, H.-F.; Chen, H.-L.; Wang, Y.; Cheng, P.-Y.; Liu, H.-L.; Xia, Y.; Sung, H.-W., A Thermoresponsive Bubble-Generating Liposomal System for Triggering Localized Extracellular Drug Delivery. ACS Nano 2013, 7 (1), 438-446.
75. Banerjee, J.; Hanson, A. J.; Gadam, B.; Elegbede, A. I.; Tobwala, S.; Ganguly, B.; Wagh, A. V.; Muhonen, W. W.; Law, B.; Shabb, J. B.; Srivastava, D. K.; Mallik, S., Release of Liposomal Contents by Cell-Secreted Matrix Metalloproteinase-9. Bioconjugate Chem. 2009, 20 (7), 1332-1339.
|