參考文獻 |
1. Weitz, D. A., J. P. Stokes, R. C. Ball, and A. P. Kushnick (1987),
Dynamic capillary pressure in porous media: Origin of the
viscous-fingering length scale, Phys. Rev. Lett., 59, 2967–
2970, doi:10.1103/PhysRevLett.59.2967.
2. Geiger, S. L., and D. S. Durnford (2000), Infiltration in
homogeneous sands and a mechanistic model of unstable flow, Soil
Sci. Soc. Am. J., 64(2), 460–469,
doi:10.2136/sssaj2000.642460x.
3. Rose, W. , and Heins, R. W. ,J. Colloid Chem.,17, 39 (1962)
4. Hoffman, R. L. (1975), A study of the advancing interface. I.
Interface shape in liquid—gas systems, Journal of Colloid and
Interface Science, 50(2), 228–241, doi:10.1016/0021-
9797(75)90225-8.
5. de Gennes PG. 1985. Wetting: statics and dynamics. Rev. Mod.
Phys. 57:827–63
6. Cox RG. 1986. The dynamics of the spreading of liquids on a solid
surface. Part 1. Viscous flow. J. Fluid Mech. 168:169–94
7. M. Bracke, F. De Voeght, P. Joos, The kinetics of wetting: the
dynamic contact angle. progr. Colloid pol. Sci. 79, 142-149
(1989)
8. Bera, B., Gunda, N. S., Karadimitriou, N. K., Mitra, S.,
Hassanizadeh, S. M., (2011), Fabrication of glass micro-model
to perform multi-phase flow in a pore network structure,
Conference Proceedings of the “ASME –JASME– KSME Joint
Fluids Engineering Conference 2011”, Hamamatsu, Japan.
9. Hsu, S.-Y., and M.Hilpert(2011),Incorporation of dynamic
capillary pressure into the Green-Ampt model for
infiltration,Vadose Zone J.,10,642–653.
10. Green, W.H., and G. Ampt. 1911. Studies on soil physics: 1.
Th e fl ow of air and water through soils. J. Agric. Sci. 4:1–
24
11. Chatenever, A., and J. C. Calhoun, Visual examinations of fluid
behaviorin porous media, I, Trans. Am. Inst. Min. Metall. Pet.
48
Eng.,AIME, 195, 149-156, 1952.
12. Thompson,J.D., Higgins,D.G. & Gibson,T.J. (1994). CLUSTAL W:
improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, positions-specific gap
penalties and weight matrix choice.Nuc. Ac. Res.22, 4673-4680.
13. C. C. Mattax and J. R. Kyte, Ever see a water flood?, Oil Gas
J. 59 115-128 (1961)
14. M.Y.C. and P.F. , Glass bead micromodel study of solute
transport. 1999.
15. Cheng, J.-T. (2002), Fluid flow in ultrasmall structures, Ph.D.
thesis,Purdue Univ., West Lafayette, Indiana
16. <多相流於孔隙介質中主要流動機制之微模型實驗與研究.pdf>
17. C.E.Baver Dynamic contact angles and wetting front instability
in soils.2013
18. Jo, B.-H., et al., Three-dimensional micro-channel
fabrication in polydimethylsiloxane (PDMS) elastomer. Journal
of microelectromechanical systems, 2000. 9(1): p. 76-81.
19. Neethirajan, S., et al., Microfluidics for food, agriculture
and biosystems industries. Lab on a Chip, 2011. 11(9): p.
1574-1586.
20. Baver, Christine, et al. "Relating dynamic contact angle to
wetting front instability." EGU General Assembly Conference
Abstracts. Vol. 15. 2013.
21. de Gennes, Pierre-Gilles, Brochard-Wyart, Francoise, Quere,
David Capillarity and Wetting Phenomena Drops, Bubbles, Pearls,
Waves (2004)
22. Blois, Gianluca, Julio M. Barros, and Kenneth T. Christensen.
"A microscopic particle image velocimetry method for studying
the dynamics of immiscible liquid–liquid interactions in a
porous micromodel." Microfluidics and Nanofluidics 18.5-6
(2015): 1391-1406.
23. NIEBER, DAUTOV, EGOROV,SHESHUKOV, Dynamic Capillary Pressure
Mechanism for Instability in Gravity-Driven Flows; Review and
Extension to Very Dry Conditions, transp Porous Med (2005)
58:147–172, DOI 10.1007/s11242-004-5473-5, Springer 2005 |