博碩士論文 103821602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:13.59.218.147
姓名 施芯蒂(Shinta Marito)  查詢紙本館藏   畢業系所 生命科學系
論文名稱
(The study of in vitro and in vivo fermentation of bacteria in the skin microbiome)
相關論文
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 表皮葡萄球菌在人類皮膚微生物總體對皮膚訊號與腦波訊號影響
★ 土壤微生物組體研究:藉由內生細菌誘導之高GABA含量水稻增加神經肽Y以及減輕小鼠焦慮★ Fermentation of Leuconostoc mesenteroides reduces abdominal fat accumulation in high-fat diet mice
★ 選擇性發酵引發劑(SFI)觸發表皮葡萄球菌發酵以緩解UV-B誘導的自由基生成★ Identify and characterize the fermenting and electrogenic skin bacteria using selective prebiotics
★ 有益微生物的真菌學和細菌學研究: 在農業和人類健康中的應用★ 人體皮膚致電微生物組通過調節鐵和自由基來減輕紫外線B引起的皮膚損傷。
★ 微生物組中的細菌作為治療人類疾病的生物療法★ 皮膚表皮葡萄球菌作為電力活性菌以抑制痤瘡丙酸桿菌
★ 鼠李糖乳桿菌作為益生菌對抗 SARS-CoV-2 膜糖蛋白誘導的炎症★ Flavin mononucleotide-based electricity production by Staphylococcus epidermidis alleviates SARS-CoV-2- Nucleocapsid Phosphoprotein-induced IL-6 expression
★ Profiling the Age-related Microbiome via Detection of Antibodies to Gut Bacteria★ BACILLUS AMYLOLIQUEFACIENS生長在高GABA含量稻米刺激膠原蛋白合成以及減緩磷酸三鈣誘導產生的皮膚搔癢
★ 人體汗水之乳酸鈉觸發人類皮膚益生菌之表皮葡萄球菌發酵及皮膚電導之應用★ 5-甲基糠醛抑制L-乳酸葡萄球菌的發酵 表皮葡萄球菌和雙乙酰產生:一種淺在的新型除臭劑靶向人體汗液中的细菌發酵
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 中文摘要
在皮膚上有許多不同微生物群存在,包括了細菌與真菌。菌與真菌的相互作用在人體中許多部份包括口腔和腸胃道都能找到。這樣物種間不同的交互作用在常見的丙酸桿菌屬能夠被觀察到。在正常皮膚與青春痘影響的的皮膚上,不同品系之丙酸桿菌分布有顯著的不同,這也顯示出不同品系間交流的可能性。紅色毛癬菌 (108 CFU/ml)與皮膚共生表皮葡萄球菌 (108 CFU/ml)在含有甘油條件下共同培養發現,能夠藉由甘油發酵並且產生短鍊脂肪酸。我們發現表皮葡萄球菌能夠干擾紅色毛癬菌生長。在丙酸痤瘡桿菌與表皮葡萄球菌共同培養的情況下,丙酸痤瘡桿菌的生長會被表皮葡萄球菌藉由蔗糖發酵之短鏈脂肪酸給抑制。在體內的實驗中我們發現,在老鼠耳朵的動物模式中表皮葡萄球菌藉由蔗糖發酵能夠改善丙酸痤瘡桿菌誘導的巨噬細胞發炎蛋白-2 (MIP-2)產生。此外,利用丙酸痤瘡桿菌之單株抗體能顯著的…減少老鼠耳朵模式的發炎反應及丙酸痤瘡桿菌之菌落。

關鍵字: 紅色毛癬菌、表皮葡萄球菌、丙酸痤瘡桿菌、短鏈脂肪酸、單株抗體
摘要(英) Abstract

The skin is colonized by a diverse array of microorganisms including bacteria and fungi. The bacterium-fungal interaction is found in many parts of the human body including the oral cavity and gastrointestinal tract. Interaction between species of one common genus is observed in propionibacteria. The distribution of different Propionibacterium strains is significantly different on the skin of healthy subjects in comparison to acne-affected skin indicating a possible communication between bacterial strains. Co-culturing the Trichophyton rubrum (T. rubrum) (108 CFU/ml) with commensal Staphylococcus epidermidis (S .epidermidis) (108 CFU/ml) in presence of glycerol showed the production of short chain fatty acids (SCFAs) by fermentation of glycerol. We found that S. epidermidis interfered with the growth of T. rubrum. In co-culture of S. epidermidis and Propionibacterium acne (P. acnes), P. acnes growth was inhibited by production of SCFAs via the sucrose fermentation of S. epidermidis. In vivo studies showed that S. epidermidis sucrose fermentation can ameliorate the P. acnes-induced macrophage inflammatory protein-2 (MIP-2) production in the mouse ear. Additionally, P. acnes colonization and inflammation of mouse ear were significantly reduced by using monoclonal antibodies to P. acnes.

Keywords: T. rubrum, S. epidermidis, P. acnes, SCFA, monoclonal antibody.
關鍵字(中) ★ 紅色毛癬菌
★ 表皮葡萄球菌
★ 丙酸痤瘡桿菌
★ 短鏈脂肪酸
★ 單株抗體
關鍵字(英) ★ T. rubrum
★ S. epidermidis
★ P. acnes
★ SCFA
★  monoclonal antibody
論文目次 Table of Contents
中文摘要………………………………………………………………………… i
Abstract……………………………………………………………..……………………. ii
Acknowledgments ………………………………………………………………….... iii
Table of Contents ……………………………………………………………………….. iv
List of Figure………………………………………………………………………….... vi

I. Introductions
1. Skin Microbiome……………………………………………………................. 1.
1.1. Trichophyton rubrum…………………………………………………………… 1.
1.2. Staphylococcus epidermidis………………………………….................... 1.
1.3. Staphylococcus lugdunensis ……………………………………………... 2.
1.4. Propionibacterium acnes……………………………………………………. 3.
1.5. Escherichia coli …………………………………………………………. 4.
2. Interaction of Skin Micro Flora………………………………........................... 4.
2.1. Bacterium fungi interaction…………………………………………….... 4.
2.2. Bacterium – bacterium interaction……………………………………...... 5.
3. Fermentation of Bacteria……………………………………………………….. 6.
4. Monoclonal Antibody………………………………………………………….. 7.
5. mPEG-PCL synthesis………………………………………………………..… 8.

II. Materials
1. Apparatus or instrument………………………………………………………... 9.
2. Reagent ………………………………………………………………………... 9.

III. Methods
1.1. Growth of bacteria……………………………………….…………………… 11.
1.2. Fermentation experiment……………………………………………………... 11.
2.1. Preparation of mPEG – PCL……………………………………………….. 11.
2.2. Spectrophotometer measurement principal………………………………… 12.
2.3. Phenol Red acid – base indicator experiment………………………………. 12.
2.4. Method……………………………………………………………………... 12.
3. Two layer assay………………………………………………………………...….... 13.
4. In vitro neutralization assay………………………………………………………… 13.
5. In vivo neutralization assay…………………………………………………………. 14.
6. Fermentation of bacteria in vivo……………………………………………………. 15.
7. ELISA………………………………………………………………………………. 16.

IV. Result
1. Interference of Commensal S.epidermidis with the Growth of T.rubrum in the presence of Glycerol……………………………………………………………………………. 17.
2. Bacteria fermentation in vitro………………………………………………………… 17.
3. S.epidermidis Sucrose Fermentation Abrogated P.acnes – Induced Inflammation and Bacteria Colonization in vivo……………………………………………………… 18.
4. Using Monoclonal Antibody against P.acnes lipase in vivo……………….... 18.
V. Discussions…………………………………………………………………………. 17.
VI. References………………………………………………………………………...… 22.
VII. Appendixes ………………………………………………………………………… 29.

參考文獻 References


1. Avila M, et al.(2009). The oral microbiota: living with a permanent guest. DNA and cell biology. 28, 405-411.
2. Brook I, and Frazier EH. (1991) Infections caused by Propionibacterium species. Rev Infect Dis 13,819-22.
3. Brukhart CG, Burkhart CN, and Lehmann PF. (1999) Acne : a review of immunologi and microbiologic factor. Postgrad Med 75, 328-31.
4. Chen Q, Koga T et al. (2002) Propionibacterium acne induced IL-8 production may by mediated by NF-kappaB activation in human minocytes. J Dermatol Sci 29, 97-103.
5. Cogen AL, et al. 2010. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. The Journal of investigative dermatology. 130,192–200.
6. Cummings. 1981; Short chain fatty acids in the human colon. Gut, , 22, 763-779.
7. Findley K et al. (2013) Topographic diversity of fungal and bacterial communities in human skin. Nature.; 498:367–370.
8. Fitz-Gibbon S, et al. 2013. Propionibacterium acnes strain populations in the human skin microbiome associated with acne. The Journal of investigative dermatology.133,2152–2160.
9. Goerke C et al. (2009) Diversity of prophages in dominant Staphylococcus aureus clonal lineages. Journal of bacteriology, 191,3462–3468.
10. Gollnick H (2003) Current concepts of the pathogenesis of ance. Implications for drug treatment. Drugs 63. 1579-96.
11. Kao MS, Yanhan W, Shinta M, Stephen H et al. (2016). The mPEG-PCL Copolymer for Selective Fermentation of Staphylococcus lugdunensis Against Candida parapsilosis in the Human Microbiome Microb Biochem Technol 8,4.
12. Kong HH, et al. 2012. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome research.22,850–859.
13. Koreck A, Pivaresi A, Dobozy A et al. (2003). The role of innate immunity in the pathogenesis of acne. Dermatology 206, 96-105.
14. Marinelli LJ, et al. (2012) Propionibacterium acnes bacteriophages display limited genetic diversity and broad killing activity against bacterial skin isolates. mBio.
15. N. Miled. at el., (2000). Biochimica et Biophisica acta 1476 165–172.
16. Neish, AS. (2009). Reviews in basic and clinical gastroenterology. Gastroenterology,, 136, 65–80.
17. Nir-Paz R, Hila E, Gerald EP, David Walker et al. (2003). Deep Infection by Trichophyton rubrum in an Immunocompromised Patient. J Clinical Micro 41,5298–5301.
18. Otto M. (2009). Bacterial sensing of antimicrobial peptides. Contrib Microbiol ,16,136–149.
19. Paulino LC, et al. (2008) Analysis of Malassezia microbiota in healthy superficial human skin and in psoriatic lesions by multiplex real-time PCR. FEMS yeast research,8,460–471.
20. Peleg AY, et al. (2010) Medically important bacterial-fungal interactions. Nature reviews Microbiology. 8,340–349.
21. Rahimi H, Simonetta S, Aurelia R et al.(2004). Monoclonal antibodies against Candida rugosa lipase. J Molecular Catalysis B, 28, 71-74.
22. Van Amersfoort ES, Van Berkel et al. (2003). Receptors, mediators, and mechanism involved in bacterial sepsis shock. Clin Microbial 16, 379-414.
23. Wang Y, Kao MS, Jinghua Y et al. (2016). A Precision Microbiome Approach Using Sucrose for Selective Augmentation of Staphylococcus epidermidis Fermentation against Propionibacterium acnes. Int. J. Mol. Sci, 17, 1870.
24. Wang Y, Kuo S, Shu M, Yu J, Huang S, et al. (2014) Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl Microbiol Biotechnol 98: 411-424
25. Wei W, Cao Z, Zhu YL, Wang X, Ding G, et al. (2006) Conserved genes in a path from commensalism to pathogenicity: comparative phylogenetic profiles of Staphylococcus epidermidis RP62A and ATCC12228. BMC Genomics 7: 112.

指導教授 黃俊銘(Huang Chun Ming) 審核日期 2017-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明