博碩士論文 89222029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.12.166.24
姓名 范裕淦(Yu-Gan Fan)  查詢紙本館藏   畢業系所 物理學系
論文名稱 H2O+ CO2+ NH3 混合冰晶的光脫附質譜分析
(Photo-desorbed Mass Spectrum Analysis onH2O+ CO2+ NH3 Mixed Ice)
相關論文
★ 冰晶光脫附率量測★ 鋅原子在3d游離閾下光吸收絕對截面測量
★ 16K下H2O+CO2+NH3混合冰晶的光脫附反應之傅氏紅外光譜★ 純水、純水加二氧化碳及純水加氨三種不同 冰晶在氫氣微波放電管光源照射下的總離 子脫附率
★ 鎂原子與氫分子在量子干涉效應下的光譜量測★ 鎂蒸氣中光速的變異
★ UV/EUV光子對星際冰晶的光化作用★ 氦狹窄共振線的光譜分析和鹼土族原子在直流電場下的反應
★ 極性分子與非極性分子對含CH4混合冰晶光化作用之影響★ N2 + CH4 + H2O 混合冰晶在氫氣微波放電光源照射下的光化產物
★ H2S+CO與H2S+CO2混合冰晶光化作用下含硫分子之生成機制★ VUV/EUV對類冥王星冰晶之光化作用研究
★ H2O 冰晶光子作用之溫度效應研究★ 嘧啶混合冰晶之光化作用研究
★ CO2冰晶光脫附之溫度效應研究★ X射線與電子能量作用下星際冰晶的化學衍化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了更進一步對星際中各物質組成的演化與行成有所了解,例如:彗星、分子雲等。我們設計了一個有關混合冰晶在光子輻射下的光脫附模擬實驗。實驗中,用以模擬光脫附所使用的冰晶成分組成分別為H2O+ CO2+ NH3 = 1: 1: 1與1: 1: 4的比例。實驗過程,藉由一四極式質譜儀對光脫附物質進行量測,而微量秤則用來量測混合冰晶整體質量上的變化。至於模擬的光源係由國家同步輻射研究中心的High-Flux光束線來提供;整個實驗的環境模擬則是架構於一超高真空腔體內並且藉由冷凍機提供所需的低溫環境。
從實驗的結果中,我們發現在光子照射過程下,將導致各種演化分子不斷地由冰晶層上脫附出來。其中包含了H2、NH2、NH3、CO、O2及CO2。而相較於實驗中所使用的兩種冰晶樣品,更發現了CO的脫附產量在H2O+ CO2+ NH3 = 1: 1: 1的混合冰晶中是最大量的脫附物,而H2卻是H2O+ CO2+ NH3 = 1: 1: 4的混合冰晶中脫附產量最大的物質。此行為也同樣於質量脫附率上得到相互的應合,在1: 1: 1樣品中的質量脫附率是大於1: 1: 4樣品的。而整合實驗結果後,我們認為氫原子所佔的數量多寡將決定光脫附過程的化學演變路徑,致使各種脫附產物於脫附量上以及產物行成上的差異。
摘要(英) A photodesorption simulation on mixed ices under photon irradiation was presented in our studies for understanding the formation and evolution of the chemical composition in our solar system, such as comets and molecular clouds. The mixed ices with ratio of H2O+ CO2 + NH3 = 1: 1: 1 and 1: 1: 4 at 20 K were selected to for the process of photon irradiation. A quadrupole mass spectrometer was employed to detection of desorbed products and the quartz crystal microbalance for determination of mass loss rate. The necessary intense simulation of solar radiation is provided by the High Flux beamline at Synchrotron Radiation Research Center. An ultra-high vacuum system and a cryogenic cold finger were assembled to simulate the astronomical environments.
The experimental results on the photo-desorbed mass spectra reveals that desorbed products include H2, NH2, NH3, CO, O2, and CO2 .The obvious difference between those two mixed ices is the abundance. CO is more abundant in the ice of H2O+ CO2 + NH3 = 1: 1: 1 and H2 in the other ice sample. The behavior is also reflected on the mass desorption rate. In the ice of H2O+ CO2 + NH3 = 1: 1: 1, the mass desorption rate is more than that in H2O+ CO2 + NH3 = 1: 1: 4. An effect dominated by hydrogen atom on desorption abundance and chemical pathway is also observed.
關鍵字(中) ★ 冰晶
★ 光脫附
關鍵字(英) ★ ice
★ photodesorption
論文目次 Acknowledgement (Chinese) Ⅲ
Contents Ⅳ
Figures Lists Ⅴ
Tables Lists Ⅴ
Chapter 1 Introduction
1-1 Interstellar Medium and Ice………………………………………………1
1-2 Energetic Processing……………………………………………………...3
1-3 Ice Analogs and Reaction Schemes………………………………………5
Chapter 2 Experimental Setup and Experimental Procedure
2-1 Gas Preparation…………………………………………………………...7
2-2 Ice Sample………………………………………………………………..8
2-3 Photon Irradiation………………………………………………………...9
Chapter 3 Results
3-1 Fragmentation Analysis in Pure Gas……………………………………10
3-2 Data Analysis…..………………………………………………………..10
3-3 Interpretation of Mass Spectra and Total Mass Desorption Rates………13
3-4 Discussion ………………………………………………………………15
Chapter 4 Conclusions………………………………………………….…………18
References..………………………………………………………………………….19
Figures Lists
Figure 1 A schematic diagram of experimental arrangement. ……………………………22
Figure 2 The IR difference of absorbance of H2O: CO2: NH3=1: 1: 1 at 20K. Dashed line shows the difference of absorbance before irradiation; solid line shows the difference of absorbance after irradiation. The feature of CO2, H2O and NH3 are assigned in spectrum. After photon irradiation, the feature at H2O is raised, but decreased in CO2 and NH3. ……………………………………………………23
Figure 3 The IR difference of absorbance of H2O: CO2: NH3=1: 1: 1 at 20K. Dashed line shows the difference of absorbance before irradiation; solid line shows the difference of absorbance after irradiation. The feature at O2, NH2, N2H4, and CO appear after photon irradiation. ………………………………………………..24
Figure 4 Mass spectra of H2O+ CO2+ NH3 (1: 1: 1) at 20 K from 0 to 50 amu before (bottom panel) and after (middle panel) photon irradiation (to a dose of about 1x1018 photons/cm2). And the difference is showed at top panel. …………….25
Figure 5 Photodesorption products were H2, NH2, NH3, CO, O2, and CO2 in the ice of H2O+ CO2+ NH3 (1: 1: 1) during photon irradiation and with increment dose desorption abundance would be in saturation. ………………………………...26
Figure 6 Mass spectra of H2O+ CO2+ NH3 (1: 1: 4) at 20 K from 0 to 50 amu before (bottom panel) and after (middle panel) photon irradiation (to a dose of about 1x1018 photons/cm2). And the difference is showed at top panel. …………….27
Figure 7 Photodesorption products were H2, NH2, NH3, CO and CO2 in the ice of H2O+ CO2+ NH3 (1: 1: 4) during photon irradiation and with increment dose desorption abundance would be in saturation. ………………………………..28
Figure 8 Desorption yield vs. photon dose in ice of H2O+ CO2+ NH3 (1: 1: 1) given from QCM. ………………………………………………………………………….29
Figure 9 Desorption yield vs. photon dose in ice of H2O+ CO2+ NH3 (1: 1: 4) given from QCM. ………………………………………………………………………….29
Figure 10 Flow charts of data analysis. …………………………………………………..30
Tables Lists
Table 1 Molecular abundances in Comet Hale-Bopp, interstellar ices of NGC 7538 IRS 9 and W33A. ……………………………………………………………………..31
Table 2 The relative intensity of fragment ions in mass spectra of CO2, H2O, NH3, O2, CO, and H2 were given from a quadrupole mass spectrometer (Balzers QMS200)…32
Table 3 Assumption of desorbed products obtained from the mass spectra during photon irradiation. ……………………………………………………………………….32
參考文獻 References
Allamandola, L. J., Sandford S. A., Tielens A.G..G..M., Herbst T. M. 1992. ApJ, 399, 134.
Allamandola, L. J., M. P. Bernstein and S. A. Sandford 1997. Photochemical Evolution of Interstellar Precometary Organic Material. In Astronomical and Biochemical Origins and the Search for Life in the Universe, 23-47.
Bernstein, M. P., S. A. Sandford, L. J. Allamandola, J. S. Gillette, J. Clemett and R. N. Zare 1999b. UV irradiation of Polycyclic Aromatic Hydrocarbons in Ices: Production of Alcoholes , Quinones, and Ethers. Science, 283, 1135-1138.
Cowley, C. R. 1985. An Introduction to Cosmochemistry. Cambridege Univ. Press.
Charnley SB. 1997. In Astronomical & Biochemical Origins and the Search for Life in the Universe, ed. CB Cosmovici, S Bowyer, D Wertheimer, 89-96. Bologna: Editrice Composition.
Crovisier, J., 1998. Physics and Chemistry of Comets: Results from Comets Hyakutake and Hale-Bopp. Faraday Dicuss, 109, 437-452.
d’Hendecourt, L. B., Allamandola, L. J., and Greenberg, J. M. 1985. Astr. Ap., 152, 130.
Gerakines, P. A., W. A. Schutte, and P. Ehrenfreund 1996. Astron. Astrophys., 312, 289-305.
Gerakines, P. A., DCB. Whittet, P. Ehrenfreund et al. 1999. APJ, 522, 357.
Gerakines, P. A., M. H. Moore and R. L. Hudson 2000. Carbonic Acid Production in the H2O : CO2 Ices: UV Pyotolysis vs. Proton Bombardment. Astron. Astrophys., 357, 793-800.
Gibb, E. L. et al. 2000. An Inventory of Interstellar Ices toward the Embedded Protostar W33A. Astrophysical Journal, 536, 347-356.
Greenberg, J. M., 1982. Astron. Astrophys., 330, 375-80.
Greenberg, J. M., 1986. Astrophys. Space. Sci., 128, 17-29.
Greenberg, J. M. 1999. In Formation and Evolution of Solid in Space, ed. JM Greenberg, A Li, 53-76. Dordrecht: Kluwer
Greenberg, J. M., J. S. Gillette, G.. M. Munoz Caro, Tania B. Mahajam, Richard N. Zare, Aigen Li, WA. Schutte, Menno de Groot and Cella Mendoza Gomez 2000. Ultraviolet Photoprocessing of Interstellar Dust Mantles as A Source of Polycyclic Aromatic Hydrocarbons and Other Conjugated Molecules. Astrophysical Journal, 531, 71-73.
Hollenbach, D. J., & Thronson, H. A. 1987. Interstellar Processes. Dordrecht: Reidel.
Hudson, R. L., and M. H. Moore 1999. Laboratory Studies of the Formation of Methanol and Other Organic Molecules by Water + Carbon Monoxide Radiolysis: Relevance to Comets, Icy Satellites and Interstellar Ices. Icarus, 140, 451-461.
Hudson, R. L. and M. H. Moore 2000. New Experiments and Interpretations Concerning the “XCN” Band in Interstellar Ice Analog. Astron. Astrophys., 357, 789-792.
Hudson, R. L., M. H. Moore, and P. A. Gerakines 2001. The Formation of Cyanate Ion (OCN) in Interstellar Ice Analogs. Astrophysical Journal, 550, 1140-1150.
Irvine, W. M., 1998. Orig. Life Evol. Biosph., 28, 365-383.
Johnson, R. E.1990. Energetic Charged-Particle Interactions with Atmospheres and Surfaces. Springer-Verlag, New York.
Kaiser, R. I. and Roessler, K. 1998. Ap. J., 503, 959-975.
Meier, R. R., 1991. Ultraviolet Spectroscopy and Remot Sensing of the Upper Atmosphere. Space Sci. Rev., 58, 1-158.
Moore, M. H., R. L. Hudson 1998. Icarus, 135, 518-527.
Moll, N. B., D. R. Ckitter, W. E. Thompson 1996. J. Chem. Phys., 45, 4469.
Okabe, H. 1978. Photochemistry of Samll Molecules. Wiley, New York.
Pendleton Y. 1997. Orig. Life Evol. Biosph. 27, 53-78
Schutte, W. A. 1996. In the Cosmic Dust Connection, ed. JM Greenberg, 1-42. Dordrecht: Kluwer.
Schutte, W. A., A. C. A. Boogrt, A. G.. G.. M. Tielens, D. C. B Whittet, P. A. Gerakines, J. E. Chiar, P. Ehrenfreund, J. M. Greenberg, E. F. van Dishoeck, and T. de Graauw 1999. Weak Ice Absorption Features at 7.24 and 7.41 μm in the Spectrum of the Obscured Young Stellar Object W33A. Astron. Astrophys., 343, 966-976.
Tielens, A.G.. M., and W. Hagen 1982. Astr. Ap., 114, 245-260.
Tielens AGGM, Whittet DCB. 1997. In Molecules in Astrophysics: Probes and Processes, ed. EF van Dishoeck, 45-60. Dordrecht: Kluwer.
Tielens AGGM, Charnley SB. 1997. Orig. Life Evol. Biosph., 27, 23-51
Tielens AGGM, Hony S., van Kerckhoven C, Peeters E. 1999. In The Universe as seen by ISO, 427, 579-588. Noordwijk: ESA Publ. Div.
Whittet DCB. 1993. In Dust and Chemistry in Astronomy, ed. Tj Millar, DA Williams, 9-35. Bristol: IOP Publ. Ltd.
Westley, M. S., R. A. Baragiola, R. E. Johnson, and G. A. Baratta 1995b. Ultraviolet Photodesorption from Water oce. Planet. Space Sci., 43 ,1311-1315.
Woon, D. E., 2002. Pathways to Glycine and Other Amino Acid in Ultraviolet-Irradiated Astrophysical Ices Determined via Quantum Chemical Modeling. Astrophysical journal, 571,177-180.
Wu, C. Y. R., B. Y.Yang, and D. L. Judge 1994. Total Ion Desorption Yield of H2O, D2 O, CH3OH, CD3OD and Water-Methanol Mixed Ices Irradiated at 58.4 nm. Planet. Space Sci., 42, 273-277.
Wu, C. Y. R., D. L. Judge, B.-M. Cheng, W.-H. Shin , T.-S. Yih and W. H. Ip 2002a. Extreme Ultraviolet Photon-Induced Chemical Reaction in Ice Analogs At 10 K. Icarus, 156, 456-473.
指導教授 易台生(Tai-Sone Yih) 審核日期 2003-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明