博碩士論文 103622020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:104 、訪客IP:18.117.12.181
姓名 沈剛年(Kang-Nien Shen)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 台灣西南海域之增積岩體於更新世以來受到構造控制之深海水道/深海扇系統演育
(Structure controls on the development of submarine channel/fan systems of the accretionary wedge off SW Taiwan)
相關論文
★ 台灣西南部中新世井下地層之沉積環境與層序地層研究★ 台灣西南海域含天然氣水合物地層之構造架構與沈積特徵
★ 台灣西南外海之構造與地形特徵及澎湖海底峽谷演化★ 台灣海峽及台灣西部平原之沈積層速度構造
★ 台灣西南外海碰撞帶前緣的近代沉積作用與新構造運動★ 台灣中部早期前陸盆地的地層紀錄
★ 台灣西南部前陸地區演育與古應力分析★ 台灣西北部漸新世至更新世盆地演化及層序地層
★ 煤岩材料與沉積環境綜合研判★ 二氧化碳地質封存潛能評估與封存場址選擇:以桃園台地為例
★ 臺灣西北部中新世-更新世沉積岩中黏土礦物和成岩作用研究★ 台灣西北部大漢溪剖面南莊層至楊梅層之沉積環境研究
★ 台灣東北外海沖繩海槽及龜山島附近之海床沉積物特徵★ 台灣西南外海高屏峽谷沉積物及沉積機制研究
★ 台灣西南海域天然氣水合物地質控制因素與資源量評估★ 台灣中部地區潛在二氧化碳封存層與蓋層之礦物組成分析及地體構造意義
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣西南海域之地體構造由南向北為隱沒作用漸變至初期弧陸碰撞的階段,為南中國海北部大陸邊緣及呂宋火山島弧之間的增積岩體區域。增積岩體有顯著的褶皺與逆衝斷層構造,同時由台灣造山帶提供的大量沉積物堆積於增積岩體上,產生海底峽谷與水道及斜坡扇沉積系統。位於增積岩體下部並且靠近南中國海大陸邊緣的澎湖峽谷/斜坡扇系統,其於全球低海平面時,經由台灣南部以及中國東南部之陸上河流提供沉積物傳輸至深海環境之中,而在現今之高海平面時,河流供應源與峽谷分離。貫穿增積岩體之上部斜坡及下部斜坡之高屏峽谷/深海扇系統,無論海平面低或高,其峽谷源頭接直接連於高屏溪出海口。
本研究利用海研一號研究船於2012年4月至2013年8月於台灣西南外海蒐集之多批多頻道反射震測資料MCS994、MCS1000-6、MCS1014及MCS1046,研究區域中逆衝斷層/褶皺構造及水道深海扇系統,利用震測相分析,以及由南中國海北緣之大陸棚所獲得的鑽井資料對比上新世底部及更新世底部之關鍵地層面。
研究結果顯示,上部高屏峽谷位置受限於構造海脊的分布,而下部高屏峽谷斜坡扇系統於更新世早期有多期水道溢堤堆積,尤其在更新世晚期下部高屏峽谷水道沉積物側向加積非常明顯。位於下部增積岩體之澎湖峽谷斜坡扇系統,震測相判釋為水道切割與充填、不活躍水道堆積及水道溢堤系統。澎湖水道系統似乎受到地層受構造抬升而改道至更西側。現今澎湖水道系統及高屏水道系統各為獨立的系統,經由震測相分析解釋,兩系統於早期共同供應沉積物形成斜坡扇。早期至中期更新世於下部增積岩體形成的斜坡扇稱為古高屏斜坡扇扇,現今下部增積岩體地形起伏小的澎湖灣,即位於此高屏斜坡扇的位置。澎湖灣最早於更新世時受到局部之構造抬升,使得澎湖峽谷向西側移動至變形前緣位置。
摘要(英) The accretionary wedge off SW Taiwan is the result of incipient arc-continent collision between the Luzon volcanic arc and the northern rifted margin of the South China Sea (SCS). Dynamic interactions of thrusting, folding and a rigorous sediment supply from the Taiwan mountain belts have resulted in two arrays of canyons/channels and slope-fan systems in the accretionary wedge. The Penghu canyon/fan system lies in the lower wedge and near the northern rifted margin of the SCS. The Penghu canyon is a river-fed canyon and receives sediments from southern Taiwan and SE China during eustatic lowstands. It becomes detached from river inputs during eustatic highstands as it is in the present-day. The Gaoping canyon/fan system in the south traverses both the upper slope and lower slope domains of the accretionary wedge. This system is a river-fed system during a full eustatic cycle and it drains sediments from the onshore Gaoping River.
We interpreted multiple grids of multichannel seismic reflection data of MCS994, MCS1000-6, MCS1014, MCS1046 collected onboard Ocean Research I during 2012 April to 2013 August to map out thrust/fold structures and channel/fan systems in the study area. Seismic facies analyses were performed on seismic sections and key stratal surfaces of the bases of Pliocene and Pleistocene, respectively, are correlated from boreholes drilled in the shelf of the northern SCS margin.
Our results show that the upper Gaoping Canyon has been confined by structural ridges with limited switching of canyon courses, whereas the lower Gaoping canyon/fan system has been developed on lower slope with channel/levee deposition in multiple slope fans since early Pleistocene. Pleistocene lateral aggrading channel-and-levee systems are especially evident near the modern canyon course in the lower slope. The Penghu canyon/slope fan system in the lower accretionary wedge is also evident by seismic facies showing channel cuts-and-fills, channel abandonment and channel-and-levee systems. This system seems to migrate westwardly in response to in-sequence thrusting and westward migration of the thrust front. The Penghu and Gaoping systems are separated features in the present-day. Seismic analyses show that these two canyon/channel system jointly to feed a slope fan, termed paleo-Gaoping fan in the lower accretionary wedge, in early to middle Pleistocene. Major part of this slope fan lies in an area of low relief in the Penghu Embayment. This slope fan has been abandoned since Pleistocene because of tectonic uplift of the Penghu Embayment and switching of the Penghu canyon to the west and along the thrust front.
關鍵字(中) ★ 台灣西南海域
★ 增積岩體
★ 震測相
★ 深海水道
★ 深海扇
★ 構造演育
關鍵字(英) ★ off SW Taiwan
★ accretionary wedge
★ seismic facies
★ submarine channel
★ submarine fan
★ tectonic evolution
論文目次 中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1研究動機與目的 1
1.2台灣西南海域地質背景 1
1.2.1台灣西南海域之地形特徵 2
1.2.2台灣西南海域之地體構造 2
1.2.3 台灣西南海域之沉積環境 3
第二章 震測資料蒐集、處理及分析原理 7
2.1震測資料蒐集 7
2.2 震測資料處理 7
2.3 分析原理 9
2.3.1 震測相分析 9
2.3.2 地層年代面及不整合面 9
2.3.3 震測資料解釋上的陷阱 9
第三章 震測相分析及解釋 27
3.1 震測相分析 27
3.1.1 沉積物波 27
3.1.2崩積層 28
3.1.3斜坡盆地半遠洋沉積 28
3.1.4 海底水道&海底峽谷 29
3.1.5 扇體 31
3.1.6遠端濁流岩 31
3.1.7深海平原半遠洋沉積 31
3.1.8掩埋火山體 32
3.2震測剖面之震測相 32
3.2.1 增積岩體之上部斜坡 32
3.2.2 增積岩體之下部斜坡 33
3.2.3 南中國海海盆 38
3.3古水道分布 39
3.3.1古高屏水道系統 39
3.3.2古澎湖水道系統 40
3.3.3古福爾摩沙水道系統 40
3.4砂體分佈 40
第四章 震測資料之構造特徵及構造演化 66
4.1構造特徵 66
4.1.1 燦堯海脊 66
4.1.2 車城海脊 66
4.1.3 新月海脊 67
4.1.4 澎湖灣 67
4.2 年代界面 67
4.3 沉積過程與構造演化 68
4.3.1 澎湖灣區域 68
4.3.2 古高屏水道 68
4.3.3 台灣西南海域 69
第五章 討論 75
5.1增積岩體的水道演育 75
5.2 古水道系統間的形貌差異 75
5.3 沉積物波反映的沉積環境特徵 76
5.4 斜坡扇 76
第六章 結論 77
參考文獻 78
附 錄 84
參考文獻 英文參考文獻
Alonso, B., & Ercilla, G. (2002) Small turbidite systems in a complex tectonic setting (SW Mediterranean Sea): Morphology and growth patterns. Marine and Petroleum Geology, 19(10), 1225-1240.
Catterall, V., Redfern, J., Gawthorpe, R., Hansen, D., & Thomas, M. (2010) Architectural style and quantification of a submarine channel–levee system located in a structurally complex area: Offshore Nile Delta. Journal of Sedimentary Research, 80(11), 991-1017.
Chen, Y. G., & Liu, T. K. (1996) Sea level changes in the last several thousand years, Penghu Islands, Taiwan Strait. Quaternary Research, 45(3), 254-262.
Collot, J. Y., Agudelo, W., Ribodetti, A., & Marcaillou, B. (2008) Origin of a crustal splay fault and its relation to the seismogenic zone and underplating at the erosional north Ecuador–south Colombia oceanic margin. Journal of Geophysical Research: Solid Earth, 113(B12).
Conin, M., Henry, P., Godard, V., & Bourlange, S. (2012) Splay fault slip in a subduction margin, a new model of evolution. Earth and Planetary Science Letters, 341, 170-175.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M. J., Chen, M. C., Stark, C. P., Lague, D. & Lin, J. C. (2003) Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967), 648-651.
Deptuck, M. E., Steffens, G. S., Barton, M., & Pirmez, C. (2003) Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the Arabian Sea. Marine and Petroleum Geology, 20(6), 649-676.
Einsele, G. (1990) Deep-reaching liquefaction potential of marine slope sediments as a prerequisite for gravity mass flows? (results from the DSDP). Marine Geology, 91(4), 267-279.
Flood, R. D. (1988). A lee wave model for deep-sea mudwave activity. Deep Sea Research Part A. Oceanographic Research Papers, 35(6), 973-983.
Galloway, W. E. (1998) Siliciclastic slope and base-of-slope depositional systems: Component facies, stratigraphic architecture, and classification. AAPG Bulletin, 82(4), 569-595.
Gong, C., Wang, Y., Peng, X., Li, W., Qiu, Y., & Xu, S. (2012) Sediment waves on the South China Sea Slope off southwestern Taiwan: Implications for the intrusion of the Northern Pacific Deep Water into the South China Sea. Marine and Petroleum Geology, 32(1), 95-109.
Gong, C., Wang, Y., Zhu, W., Li, W., Xu, Q., & Zhang, J. (2011) The central Submarine Canyon in the Qiongdongnan Basin, northwestern South China Sea: Architecture, sequence stratigraphy, and depositional processes. Marine and Petroleum Geology, 28(9), 1690-1702.
Hsiung, K. H., & Yu, H. S. (2011) Morpho-sedimentary evidence for a canyon–channel–trench interconnection along the Taiwan–Luzon plate margin, South China Sea. Geo-Marine Letters, 31(4), 215-226.
Hsu, H. H., Liu, C. S., Yu, H. S., Chang, J. H., & Chen, S. C. (2013) Sediment dispersal and accumulation in tectonic accommodation across the Gaoping Slope, offshore Southwestern Taiwan. Journal of Asian Earth Sciences, 69, 26-38.
Hsu, S. K., Yeh, Y. C., Doo, W. B., & Tsai, C. H. (2004) New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications. Marine Geophysical Researches, 25(1-2), 29-44.
Huang, C. Y., Wu, W. Y., Chang, C. P., Tsao, S., Yuan, P. B., Lin, C. W., & Xia, K. Y. (1997) Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics, 281(1), 31-51.
Kao, H., Huang, G. C., & Liu, C. S. (2000) Transition from oblique subduction to collision in the northern Luzon arc?Taiwan region: Constraints from bathymetry and seismic observations. Journal of Geophysical Research: Solid Earth, 105(B2), 3059-3079.
Kolla, V., Eittreim, S., Sullivan, L., Kostecki, J. A., & Burckle, L. H. (1980) Current-controlled, abyssal microtopography and sedimentation in Mozambique Basin, southwest Indian Ocean. Marine Geology, 34(3-4), 171-206.
Lallemand, S. E., & Tsien, H. H. (1997) An introduction to active collision in Taiwan. Tectonophysics, 274(1), 1-4.
Lee, G. H., Kim, H. J., Han, S. J., & Kim, D. C. (2001) Seismic stratigraphy of the deep Ulleung Basin in the East Sea (Japan Sea) back-arc basin. Marine and Petroleum Geology, 18(5), 615-634.
Li, Y. H. (1976) Denudation of Taiwan island since the Pliocene epoch. Geology, 4(2), 105-107.
Liao, W. Z., Lin, A. T., Liu, C. S., Oung, J. N., & Wang, Y. (2016) A study on tectonic and sedimentary development in the rifted northern continental margin of the South China Sea near Taiwan. Interpretation, 4(3), SP47-SP65.
Lin, A. T., Liu, C. S., Lin, C. C., Schnurle, P., Chen, G. Y., Liao, W. Z., Teng, L. S., Chuang, H. J., & Wu, M. S. (2008) Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: An example from Taiwan. Marine Geology, 255(3), 186-203.
Lin, A. T., Yao, B., Hsu, S. K., Liu, C. S., & Huang, C. Y. (2009) Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics, 479(1), 28-42.
Liu, C. S., Huang, I. L., & Teng, L. S. (1997) Structural features off southwestern Taiwan. Marine Geology, 137(3), 305-319.
Liu, J. P., Liu, C. S., Xu, K. H., Milliman, J. D., Chiu, J. K., Kao, S. J., & Lin, S. W. (2008) Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Marine Geology, 256(1), 65-76.
Liu, Z., Tuo, S., Colin, C., Liu, J. T., Huang, C. Y., Selvaraj, K., Chen, C. T. A., Zhao, Y., Siringan, F. P., Boulay, S., & Chen, Z. (2008) Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Marine Geology, 255(3), 149-155.
Mayall, M., Jones, E., & Casey, M. (2006) Turbidite channel reservoirs—Key elements in facies prediction and effective development. Marine and Petroleum Geology, 23(8), 821-841.
McGlue, M. M., Scholz, C. A., Karp, T., Ongodia, B., & Lezzar, K. E. (2006) Facies architecture of flexural margin lowstand delta deposits in Lake Edward, East African rift: Constraints from seismic reflection imaging. Journal of Sedimentary Research, 76(6), 942-958.
Migeon, S., Savoye, B., Zanella, E., Mulder, T., Faugeres, J. C., & Weber, O. (2001) Detailed seismic-reflection and sedimentary study of turbidite sediment waves on the Var Sedimentary Ridge (SE France): significance for sediment transport and deposition and for the mechanisms of sediment-wave construction. Marine and Petroleum Geology, 18(2), 179-208.
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., & Pekar, S. F. (2005) The Phanerozoic record of global sea-level change. Science, 310(5752), 1293-1298.
Milliman, J. D., & Kao, S. J. (2005) Hyperpycnal discharge of fluvial sediment to the ocean: impact of super-typhoon Herb (1996) on Taiwanese rivers. The Journal of geology, 113(5), 503-516.
Mitchum Jr, R. M., Vail, P. R., & Sangree, J. B. (1977) Stratigraphy interpretation of seismic reflection patterns in depositional sequences. AAPG Memoir, 26, 117-133.
Moore, G. F., & Karig, D. E. (1976) Development of sedimentary basins on the lower trench slope. Geology, 4(11), 693-697.
Morgan, J. K., & Karig, D. E. (1995) Kinematics and a balanced and restored cross-section across the toe of the eastern Nankai accretionary prism. Journal of Structural Geology, 17(1), 31-45.
Nelson, C. H., Escutia, C., Damuth, J. E., & Twichell, D. C. (2011) Interplay of mass-transport and turbidite-system deposits in different active tectonic and passive continental margin settings: external and local controlling factors. Sedimentary. Geol, 96, 39-66.
Normark, W. R., Hess, G. R., Stow, D. A. V., & Bowen, A. J. (1980) Sediment waves on the Monterey Fan levee: A preliminary physical interpretation. Marine Geology, 37(1), 1-18.
Omosanya, K. O., & Alves, T. M. (2013) A 3-dimensional seismic method to assess the provenance of Mass-Transport Deposits (MTDs) on salt-rich continental slopes (Espirito Santo Basin, SE Brazil). Marine and Petroleum Geology, 44, 223-239.
Ota, Y., & Yamaguchi, M. (2004) Holocene coastal uplift in the western Pacific Rim in the context of late Quaternary uplift. Quaternary International, 120(1), 105-117
Posamentier, H. W., & Kolla, V. (2003) Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. Journal of Sedimentary Research, 73(3), 367-388.
Pratt, T. L., Hauser, E. C., Hearn, T. M., & Reston, T. J. (1991) Reflection polarity of the midcrustal Surrency bright spot beneath southeastern Georgia: Testing the fluid hypothesis. Journal of Geophysical Research, 96, 10-145.
Reed, D. L., Lundberg, N., Liu, C. S., & Kuo, B. Y. (1992) Structural Relations along the Margins of the Offshore Taiwan Accretionary Wedge: Implications for Accretion and Crustal Kinematics. Acta Gelological Taiwanica, 30, 105-122.
Scholz, C. H., Ando, R., & Shaw, B. E. (2010) The mechanics of first order splay faulting: The strike-slip case. Journal of Structural Geology, 32(1), 118-126.
Shanmugam, G. (2000) 50 years of the turbidite paradigm (1950s—1990s): Deep-water processes and facies models—a critical perspective. Marine and Petroleum Geology, 17(2), 285-342.
Shanmugam, G. (2003) Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons. Marine and Petroleum Geology, 20(5), 471-491.
Stow, D. A., & Tabrez, A. R. (1998) Hemipelagites: Processes, facies and model. Geological Society, London, Special Publications, 129(1), 317-337.
Suppe, J. (1981) Mechanics of mountain building and metamorphism in Taiwan. Memoir of Geological Society, China, 4(6).
Teng, L. S. (1990) Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1), 57-76.
Teng, L. S., & Lin, A. T. (2004) Cenozoic tectonics of the China continental margin: Insights from Taiwan. Geological Society, London, Special Publications, 226(1), 313-332.
Vail, P. R. (1987) Seismic stratigraphy interpretation using sequence stratigraphy: Part 1: Seismic stratigraphy interpretation procedure. In: Ballly, A. W. (Ed.), AAPG, Studies in Geology, 27(1), 1-10.
Willett, S. D., Fisher, D., Fuller, C., Yeh, E. C. & Lu, C. Y. (2003) Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology, 31(11), 945-948.
Wynn, R. B., Cronin, B. T., & Peakall, J. (2007) Sinuous deep-water channels: Genesis, geometry and architecture. Marine and Petroleum Geology, 24(6), 341-387.
Wynn, R. B., & Stow, D. A. (2002) Classification and characterisation of deep-water sediment waves. Marine Geology, 192(1), 7-22.
Yu, H. S., & Hong, E. (2006) Shifting submarine canyons and development of a foreland basin in SW Taiwan: Controls of foreland sedimentation and longitudinal sediment transport. Journal of Asian Earth Sciences, 27(6), 922-932.
Yu, H. S., Chiang, C. S., & Shen, S. M. (2009) Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping (Kaoping) Submarine Canyon. Journal of Marine Systems, 76(4), 369-382.
Yu, H. S., & Huang, Z. Y. (2009) Morphotectonics and sedimentation in convergent margin basins: An example from juxtaposed marginal sea basin and foreland basin, Northern South China Sea. Tectonophysics, 466(3), 241-254.
Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997) Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1), 41-59.
Zong, Y. (2004) Mid-Holocene sea-level highstand along the southeast coast of China. Quaternary International, 117(1), 55-67.

中文參考文獻
林哲銓(2005),台灣西南海域含天然氣水合物地層之構造架構與沈積特徵,國立中央大學地球物理研究所碩士論文,152頁。
林哲銓(2012),台灣西南海域天然氣水合物地質控制因素與資源量評估,國立中央大學地球物理研究所博士論文,202頁。
林殿順(2009),台灣西南海域新興能源-天然氣水合物資源調查與評估:震測及地熱調查(2/4):含天然氣水合物地層的構造與沉積特徵研究,經濟部中央地質調查所報告第98-25-F號,台北,經濟部中央地質調查所,77 頁。
林殿順(2010),台灣西南海域新興能源-天然氣水合物資源調查與評估:震測及地熱調查(3/4):含天然氣水合物地層的構造與沉積特徵研究,經濟部中央地質調查所報告第99-25-F號,台北,經濟部中央地質調查所,102 頁。
林殿順(2015),天然氣水合物資源潛能調查:震測、地熱及地球化學調查研究(4/4): 含天然氣水合物地層的構造與沉積特徵研究。經濟部中央地質調查所報告第104-11-E號,台北,經濟部中央地質調查所,共72頁。
陳冠宇(2006),台灣西南外海之構造與地形特徵及澎湖海底峽谷演化,國立中央大學地球物理研究所碩士論文,111頁。
莊介瑋(2014),臺灣台南外海正斷層以及近代沉積現象研究,國立中央大學地球科學系碩士論文,68頁。
潘玉生、陳讚煌、鐘火盛、游銘銳(1992),震測資料之認識與解釋。中國石油公司海域及海外石油探勘處、中國地球物理學會。
劉家瑄(2012),天然氣水合物資源潛能調查:震測、地熱及地球化學調查研究(1/4):反射震測與海床聲納迴聲剖面調查研究,經濟部中央地質調查所報告第101-22-A號,台北,經濟部中央地質調查所,143頁。
劉家瑄(2013),天然氣水合物資源潛能調查:震測、地熱及地球化學調查研究(2/4):反射震測與海床聲納迴聲剖面調查研究,經濟部中央地質調查所報告第102-19-A號,台北,經濟部中央地質調查所,145頁。
廖韡智(2015),南海北部靠近台灣的張裂性大陸邊緣之地體構造與沉積演育暨地熱流研究,國立中央大學地球科學系博士論文,71頁。
指導教授 林殿順(Andrew Tien-Shun Lin) 審核日期 2017-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明