博碩士論文 102282003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:3.16.47.65
姓名 蕭翌登(Yi-Teng Hsiao)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Collective Motion in Binary Cell Mixtures Formed by Cancer Trans-endothelial Migration)
相關論文
★ 細菌地毯微流道中的次擴散動力學★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon
★ hydrodynamic spreading of forces from bacterial carpet★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?
★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究
★ 雜質在假晶型碳矽合金對張力之熱穩定性影響★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon
★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應★ Thermal stability of supersaturated carbon incorporation in silicon
★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學★ Reduction dynamics of locally oxidized graphene
★ 微小游泳粒子在固定表面的聚集現象★ Role of impurities in semiconductor: Silicon and ZnO substrate
★ The growth of multilayer graphene through chemical vapor deposition★ Characteristic of defect generated on graphene through pulsed scanning probe lithography
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 細胞的集體運動可以在許多的生物過程中觀察到,如胚胎演化、傷口癒合、癌症轉移…等。在細胞層(上皮組織或內皮組織)裡,細胞的運動會透過主動的爬行(細胞骨架的聚合及解聚)、細胞與細胞間的交互作用(細胞連接)、及細胞與外在環境的交互作用(細胞粘著)表現一些合作運動。在這個的研究中,我們利用人類臍帶靜脈內皮細胞層模擬血管內皮,在加入不同特性的癌症細胞進行血管內皮穿透的過程(癌症轉移的過程之一),藉此研究所形成之混合細胞層的動力學。原本的內皮細胞層就是一個強交互作用的多體系統,隨時間細胞密度增加會讓整體的運動漸漸變慢,內皮細胞的運動是微小的搖擺運動。加入不同特性的骨髓轉移鼻咽癌細胞(野生型:高流動性、突變型:高侵犯性),癌細胞的入侵會破壞原本內皮細胞的細胞連接,但不同特性所帶來的影響不同。我們藉由縮時攝影和粒子影像測速分析法,可以探討形成過程、動力學變化、及內皮細胞的反應。我們可以觀察到動力學上的異質性。高流動性的野生型癌細胞讓內皮細胞的流動性增加,高侵犯性的突變型癌細胞藉由破壞細胞間的細胞連接,讓內皮細胞間的交互作用減少。
摘要(英) Collective motion of cells is related to many biological processes, such as embryogenesis, tumorigenesis, wound healing, and cancer metastasis. Cells in the confluent cell layer exhibit cooperative motion through the interplay of active driving, adhesion, and mutual coupling. In this work, we use the human umbilical vein endothelial cells (ECs) monolayer as the base system. The binary cell mixture is formed by the trans-endothelial migration, which is one of the cancer metastasis processes. The ECs layer is a strongly coupled dense-packed many-body system. As increasing the cell density, the dynamics of the ECs can be slowed down. There are two types of the bone marrow metastasis nasopharyngeal carcinoma cell (BM1): the wild type (WT) with high motility and the mutant type (MT) with more invasive ability. Through the time-lapse observation and particle imaging velocimetry (PIV) analysis, the formation process, the dynamics, and the response of the ECs can be explored. It is found that the property of the cancer cell can affect the collective pattern and the formation process of the binary cell mixture. The dynamical heterogeneity can be observed. It can also induce the different response of the ECs. It is found that the rocking motion of the ECs layer are changed by high motility wild type (WT) BM1 cancer cell and more invasive mutant type (MT) BM1 cancer cell. WT induces the more persistent motion and MT reduces the couplings between cells through the cell-cell junction broken.
關鍵字(中) ★ 集體運動
★ 癌細胞
關鍵字(英) ★ Collective Motion
★ Cancer cell
★ Trans-endothelial Migration
論文目次 Abstract i
Acknowledgements iii
Content iv
List of Figures v
List of Tables x

Introduction 1
Background 7
2-1. Feature of many body systems 7
2-2. Cell structure 8
2-3. Cell movement 13
2-4. Collective motion of cells 15
2-5. Dynamical heterogeneity and structural rearrangement 18
Experiment and analysis 20
3-1. Cell Culture 21
3-2. Gelatin matrix assay 23
3-3. Binary cell mixture formation (trans-endothelial migration) 24
3-4. Observation system 27
3-5. Immunofluorescence staining 29
3-6. Data analysis 30
Result and discussion 36
4-1. Endothelial cells layer structure 36
4-2. Cancer cell type characteristic 38
4-3. Formation process of binary cell mixture 40
4-4. Cancer cell density effect 42
4-5. Collective behavior 44
4-6. Response of the endothelial cells 53
Conclusions and Future work 61

Bibliographies 65
Appendixes 68
參考文獻 [1]. Gerald Karp, Cell and Molecular Biology, 2nd (1999)
[2]. Sennis Bray, Cell Movements: from molecules to motility, 2nd (2001)
[3]. Herbert Levine and Wouter-Jan Rappel, The physics of eukaryotic chemotaxis, Physics Today (2014)
[4]. Friedl, P. & Gilmour, D. Nature Rev. Mol. Cell Biol. 10, 445–457 (2009).
[5]. Henkes, S., Fily, Y. & Marchetti, M. C. Phys. Rev. E 84, 040301 (2011).
[6]. Tambe, D. T. et al. 10, 469–475 (2011).
[7]. Haeger, A., Krause, M., Wolf, K. & Friedl, P. Biochim. Biophys. Acta 1840, 2386–2395 (2014).
[8]. Amit Pathak and Sanjay Kumar., Integr. Biol., 2011, 3, 267–278 (2010)
[9]. Ryan J. Bloom et al., Biophysical Journal 95(8) 4077–4088 (2008)
[10]. Dennis E. Discher et al., Cell 126, 677–689, (2006)
[11]. Nina Kramer et al., Mutation Research 752 10–24 (2013)
[12]. Zhizhan Gu et al., Molecular Biology of the Cell, (2014)
[13]. Evanthia T. Roussos et al., Nature Reviews Cancer, (2011)
[14]. St M. Markwell and Scott A. Weed, Cancers, 7(1), 382-406 (2015)
[15]. Luisa Tasselli and Katrin F. Chua, Nature 492, 362–363 (2012)
[16]. Scott Valastyan and Robert A. Weinberg, Cell, 147, 275–292 (2011)
[17]. Dapeng Bi, J. H. Lopez, J. M. Schwarz, and M. L. Manning, Nature Physics 11, 1074–1079 (2015)
[18]. Jin-Ah Park, et al., Nature Materials 14, 1040–1048 (2015)
[19]. Jordan Jacobelli et al., PLoS ONE 8(4): e61377 (2013)
[20]. A. Rabodzey, P. Alcaide, F. W. Luscinskas, and B. Ladoux, Biophys. J. 95(3) 1428–1438 (2008)
[21]. C. Wayne Smith et al., J Immunol, 159:2893-2903 (1997)
[22]. Voura et al, Microscopy Research and Technique, 43:265–275 (1998)
[23]. O. Ramos, E. Altshuler, and K. J. Maloy, Phys. Rev. Lett. 102, 078701 (2009).
[24]. R. Candelier, O. Dauchot, and G. Biroli, Phys. Rev. Lett. 102, 088001 (2009).
[25]. C. Reichhardt and C. J. Olson Reichhardt, Phys. Rev. Lett. 90, 095504 (2003).
[26]. T. Kawasaki, T. Araki, and H. Tanaka, Phys. Rev. Lett. 99, 215701 (2007).
[27]. R. Candelier, A. Widmer-Cooper, J. K. Kummerfeld, O. Dauchot, G. Biroli, P. Harrowell, and D. R. Reichman, Phys. Rev. Lett. 105, 135702 (2010).
[28]. W. Y. Woon and L. I, Phys. Rev. Lett. 92, 065003 (2004); C. L. Chan and L. I, Phys. Rev. Lett. 98, 105002 (2007).
[29]. C. L. Chan, W. Y. Woon and L. I, Phys. Rev. Lett. 93, 220602 (2004).
[30]. R. Besseling, E. R. Weeks, A. B. Scho?eld, and W. C. K. Poon, Phys. Rev. Lett. 99, 028301 (2007).
[31]. P. Schall, D. A. Weitz, and F. Spaepen, Science 318, 1895 (2007).
[32]. M. L. Manning and A. J. Liu, Phys. Rev. Lett. 107, 108302 (2011).
[33]. K. Chen, M. L. Manning, P. J. Yunker, W. G. Ellenbroek, Z. Zhang, A. J. Liu, and A. Yodh, Phys. Rev. Lett. 107, 108301 (2011).
[34]. A. Ghosh, V. Chikkadi, P. Schall, and D. Bonn, Phys. Rev. Lett. 107, 188303 (2011).
[35]. K. A. Liu and L. I, Phys. Rev. E. 86, 011924 (2012); K. A. Liu and L. I, Phys. Rev. E. 88, 033004 (2013)
[36]. N. Uchida and R. Golestanian, Phys. Rev. Lett. 104, 178103 (2010).
[37]. Y. T. Hsiao, K. T. Wu, N. Uchida, and W. Y. Woon, Appl. Phys. Lett. 108, 183701 (2016)
[38]. Dapeng Bi, J. H. Lopez, J. M. Schwarz, and M. L. Manning, Nature Physics 11, 1074–1079 (2015)
[39]. Jin-Ah Park, et al., Nature Materials 14, 1040–1048 (2015)
[40]. A. Puliafito, L. Hufnagel, P. Neveu, S. Streichan, A. Sigal, D. K. Fygenson, and B. I. Shraiman, Proc. Natl Acad. Sci. USA 109 (3) 739-744 (2012)
[41]. S. Garcia, E. Hannezo, J. Elgeti, J.F. Joanny, P. Silberzan, and N. S. Gov Proc. Natl Acad. Sci. USA 112 (50) 15314-15319 (2015)
[42]. T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J. Fredberg, and D. A. Weitz, Proc. Natl Acad. Sci. USA 108 (12) 4714-4719 (2011)
[43]. M. P. Ciamarra, A. Coniglio, and M. Nicodemi, Phys. Rev. Lett. 94, 188001 (2005)
[44]. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Cell 139, 871–890 (2009).
[45]. Tamas Vicsek, and Anna Zafeiris, Physics Reports 517 71–140 (2012)
[46]. Tamas Vicsek, Andras Czirok, Eshel Ben-Jacob, Inon Cohen, and Ofer Shochet Physical Review Letters 75, 1226 (1995)
[47]. John Toner, and Yuhai Tu, Physical Review Letters 75, 4326 (1995)
指導教授 溫偉源(Wei-Yen Woon) 審核日期 2017-1-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明