博碩士論文 103328027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.15.193.45
姓名 WEN-HSIN(CHANG)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 三氧化鉬晶體薄膜之大氣環境製備技術開發及特性探討
(Development of In-atmosphere Fabrication Methods for Crystalline Molybdenum Trioxide Thin Films and Their Characterizations)
相關論文
★ 碳化矽光輔助化學處理之表面特性探討★ 超快雷射薄石英晶圓微鑽孔研究
★ 藍寶石薄基板圓通孔和啞鈴形通孔之超快脈 衝雷射微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射還原石墨烯之場發射特性探討
★ 崁入式網印金屬網格電極製作於有機發光二極體之應用★ 雷射直寫技術應用於金屬網格軟性透明電極製作
★ AISI-H13工具鋼之雷射衝擊強化處理與衝擊壓力檢測★ 多功能崁入式金屬網格透明電極技術開發
★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作★ 複數光源二步驟照射法應用於無鹼玻璃之無裂痕雷射加工
★ 雷射直寫草酸銀複合墨水製作金屬銀網格透明電極★ 靜電紡絲結合選擇性無電鍍沉積製作可撓式金屬網絡透明電極
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要提出能於大氣環境中製備三氧化鉬(Molybdenum trioxide, MoO3 )薄膜之製程技術,以不同的熱處理方式使薄膜結晶化及產生不同形貌的微觀結構,探討熱處理後之材料性質及熱處理參數對材料形貌的影響和機制變化。最後將所製備之三氧化鉬薄膜作為電洞元件(Hole only device, HOD)之電洞注入層(Hole injection layer, HIL ),以測試其應用於半導體元件時之電洞注入增益效應,觀察膜厚度及結晶性質對元件特性的影響。除了提出熱處理方式外,本研究亦嘗試以AHM(Ammonium heptamolybdate tetrahydrate, (NH4)6Mo7O24 ·XH2O)水溶液及硝酸(Nitric acid, HNO3 )作為前驅溶液,並成功以旋轉塗佈方式製備出?-MoO3的結晶薄膜。
本研究的第一部分以旋轉塗佈(Spin - coating )技術使前驅溶液沉積於基板上,用加熱平台進行熱處理,並對不同持溫時間的樣品進行檢測,包括: 元素分析(Elementary analysis)、表面形貌(Morphology analysis)、晶體結構(Crystalline analysis)與其光學特性,證實?-MoO3 (Hexagonal phase)薄膜沉積於基板表面。沉積?-MoO3薄膜於ITO玻璃表面的試片,於可見光波長(300 - 800 nm)範圍內穿透度能高達77 - 82%;應用於HOD中時,隨著MoO3厚度的增加及結晶性質的提升,與傳統的電洞傳輸層PEDOT:PSS相比,有更優越的效益。
本文的第二部分則以CO2 雷射之遠紅外線波長特有的熱效應,期望以更為迅速的方式提升薄膜的結晶性質。於SEM (Scannning electronic microscopy, SEM)下觀察吸收不同雷射能量後的樣品表面形貌,所得到的樣品具有針狀、片狀、塊狀等豐富的微觀形貌,並根據雷射功率及平台移動速度等參數探討其變化機制。
摘要(英) This study aims at developing in-atmosphere methods for fabricating molybdenum trioxide (MoO3) thin films. The microstructures of the crystallized thin films by different heat treatment schemes were examined and the effects of various heat treatment approaches on crystallization mechanisms were studied. The fabricated molybdenum trioxide films were finally used as the hole injection layer (HIL) for an hole only device (HOD) to verify their effects on hole injection gain. The effects of film thickness and crystallinity on the characteristics of the device were investigated. In this study, we also propose to prepare the solution through incorporating AHM with nitric acid (HNO3) as the precursor solution. In result, we successfully fabricate h-MoO3 crystalline thin films by the spin coating scheme.

In the first part of this study, the precursor solution was deposited on an ITO substrate by the spin-coating technique. The samples were heat treated on a hot plate by different heat treatment conditions. To confirm that h-MoO3 thin film was successfully fabricated, the samples were then characterized by various analyses, including elementary, morphology analysis, crystalline and optical properties. The overall transmittance for MoO3 thin films on ITO ranges from 77 to 82% at the visible light spectrum (300 to 800 nm). When used in HOD, the degree of crystallinity of MoO3 thin film can be enhanced with the increase of film thickness that, compared with the conventional hole injection layer by PEDOT:PSS, shows favorable device performance.

The second part of this thesis focuses on an alternative tool of heat treatment, CO2 laser. Since the wavelength of CO2 laser light is far infrared that provides excellent thermal effect on material processing. It is expected the crystalline of MoO3 thin films can be efficiently improved. Depending on laser powers and stage scan speeds, we observed, based on SEM images, MoO3 thin films were with various microstructures, such as needle-like, flake-like and block-like. We examine their properties and discuss their formation mechanisms.
關鍵字(中) ★ 三氧化鉬
★ 相變化
★ 結晶
★ 電洞注入層
★ 電洞元件
★ CO2雷射薄膜製備
關鍵字(英) ★ Molybdenum trioxide (MoO3)
★ Phase change
★ Crystallization
★ Hole injection layer
★ Hole only device
★ CO2 laser thin film fabrication
論文目次 Chapter 1 緒論 1
1-1 前言 1
1-2 研究背景、目的與方法 4
Chapter 2 文獻回顧與基礎理論 5
2-1 三氧化鉬微觀結構 5
2-1-1 晶體結構 5
2-1-2 表面形貌 9
2-1-3 材料性質 12
2-2 三氧化鉬沉積與合成 15
2-2-1 粉末合成 15
2-2-2 薄膜沉積 19
2-2-3 熱處理製程 22
2-3 三氧化鉬應用 25
2-3-1 生物醫學領域 25
2-3-2 儲能裝置 29
2-3-3 氣體感測裝置 31
2-3-4 半導體元件 33
2-4 傳承與創新 36
Chapter 3 實驗方法 38
3-1 實驗材料及儀器 38
3-1-1 藥品及耗材 38
3-1-2 實驗儀器 38
3-2 製程設備 40
3-2-1 CO2 雷射 40
3-2-2 PVD 熱蒸鍍機 42
3-3 實驗步驟 43
3-3-1 基板清洗 43
3-3-2 結晶性製備 43
3-3-3 元件製作 44
3-4 材料檢測分析儀器 46
3-4-1 單晶X光繞射儀 ( Single-Crystal X-ray Diffractometer,XRD ) 46
3-4-2 場發掃描式電子顯微鏡 ( Field-emmision Scanning Electronic Microscopy,FE-SEM ) 47
3-4-3 X光光電子能譜 ( Micofocus Monochromatic Al anode X-ray ,XPS ) 48
Chapter 4 結果與討論 50
4-1 前驅溶液材料分析 50
4-2 加熱平台之熱處理製程 55
4-2-1 材料分析 55
4-2-2 光學特性 67
4-2-3 元件效益 68
4-3 雷射處理製程 70
Chapter 5 結論與未來工作 80
5-1 結論 80
5-2 未來工作 81
Chapter 6 附錄 82
6-1 XRD 參考資料 82
6-2 XPS 87
6-3 微波反應之熱處理 89
參考文獻 90
碩士論文口試之口試委員問題及回覆 98
參考文獻 [ 1] Patrick, A. et al. "Rapid Synthesis of Thin and Long Mo17O47 Nanowire-Arrays in an Oxygen Deficient Flame." Scientific reports 6 (2016): 27832.
[ 2] Chang, F.K. et al. "Band offset of vanadium-doped molybdenum oxide hole transport layer in organic photovoltaics." Solid-State Electronics 122 (2016): 18-22.
[ 3] Wang, Z. et al. "Biological and environmental interactions of emerging two-dimensional nanomaterials. " Chemical Society Reviews 45.6 (2016): 1750-1780.
[ 4] Manal, Y.A. et al. "Exfoliation solvent dependent plasmon resonances in two-dimensional sub-stoichiometric molybdenum oxide nanoflakes." ACS applied materials & interfaces 8.5 (2016): 3482-3493.
[ 5] Li, X.Y. et al. "Morphological and Structural Diversity of Molybdenum Oxide-Based Hybrid Materials Prepared through PEG Induction." Crystal Growth & Design 16.3 (2016): 1512-1518.
[ 6] Hu, X. et al. "Nanostructured Mo-based electrode materials for electrochemical energy storage." Chemical Society Reviews 44.8 (2015): 2376-2404.
[ 7] Lu, L. et al. "Recent advances in bulk heterojunction polymer solar cells."Chemical Reviews 115.23 (2015): 12666-12731.
[ 8] Shetty, M. et al. "Reactivity and stability investigation of supported molybdenum oxide catalysts for the hydrodeoxygenation (HDO) of m-cresol."Journal of Catalysis 331 (2015): 86-97.
[ 9] Hamada, K. et al. "Low-temperature preparation of a molybdenum oxide hole collection layer by using a peroxo precursor for polymer solar cells." Solar Energy Materials and Solar Cells 143 (2015): 522-528.
[ 10] Hojabri, A. , F. Hajakbari and A.E. Meibodi. "Structural and optical properties of nanocrystalline α-MoO3 thin films prepared at different annealing temperatures." Journal of Theoretical and Applied Physics 9.1 (2015): 67-73
[ 11] Chithambararaj, A., N. R. Yogamalar and A.C. Bose. "Hydrothermally Synthesized h-MoO3 and α-MoO3 Nanocrystals: New Findings on Crystal-Structure-Dependent Charge Transport." Crystal Growth & Design(2016).
[ 12] Chithambararaj, A., et al. "Structural evolution and phase transition of [NH4] 6Mo7O24. 4H2O to 2D layered MoO3? x." Materials Research Express 2.5 (2015): 055004.
[ 13] Yang, S. et al. "Highly Responsive Room-Temperature Hydrogen Sensing of α-MoO3 Nanoribbon Membranes." ACS applied materials & interfaces 7.17 (2015): 9247-9253.
[ 14] Huh, Y. H., O. E. Kwon, and B. Park. "Triple-stacked hole-selective layers for efficient solution-processable organic semiconducting devices." Optics express 23.11 (2015): A625-A639.
[ 15] Kajiyama, Y., K. Kajiyama, and H. Aziz. "Diffusion barriers for achieving controlled concentrations of luminescent dopants via diffusion for mask-less RGB color patterning of organic light emitting devices." Optics express 23.24 (2015): 30783-30792.
[ 16] Hou, F. et al. "Efficient and stable planar heterojunction perovskite solar cells with an MoO 3/PEDOT: PSS hole transporting layer." Nanoscale 7.21 (2015): 9427-9432.
[ 17] Ma, Y. et al. "Facile synthesize α-MoO 3 nanobelts with high adsorption property." Materials Letters 157 (2015): 53-56.
[ 18] Zhuang, T., T. Sano, and J. Kido. "Efficient small molecule-based bulk heterojunction photovoltaic cells with reduced exciton quenching in fullerene." Organic Electronics 26 (2015): 415-419.
[ 19] Saravanamoorthy, S., A. C. Bose and S. Velmathi. "Facile fabrication of polycaprolactone/h-MoO 3 nanocomposites and their structural, optical and electrical properties." RSC Advances 5.120 (2015): 99074-99083.
[ 20] Desai, N. et al. "Chemically Grown MoO3 Nanorods for Antibacterial Activity Study." Journal of Nanomedicine & Nanotechnology 2015 (2015).
[ 21] Romero, A. et al. "A review of metal?catalyzed molecular damage: protection by melatonin." Journal of pineal research 56.4 (2014): 343-370.
[ 22] Zhang, Z. et al. "An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells." Energy & Environmental Science 7.8 (2014): 2535-2558.
[ 23] Miller, D. R., S. A. Akbar and P. A. Morris. "Nanoscale metal oxide-based heterojunctions for gas sensing: a review." Sensors and Actuators B: Chemical 204 (2014): 250-272.
[ 24] Hanlon, D. et al. "Production of molybdenum trioxide nanosheets by liquid exfoliation and their application in high-performance supercapacitors."Chemistry of Materials 26.4 (2014): 1751-1763.
[ 25] Xiao, X. et al. "Freestanding MoO 3? x nanobelt/carbon nanotube films for Li-ion intercalation pseudocapacitors." Nano Energy 9 (2014): 355-363.
[ 26] Yuan, Z. et al. "Vacuum topotactic conversion route to mesoporous orthorhombic MoO3 nanowire bundles with enhanced electrochemical performance." The Journal of Physical Chemistry C 118.10 (2014): 5091-5101.
[ 27] Thao, A.T. et al. "Toxicity of nano molybdenum trioxide toward invasive breast cancer cells." ACS applied materials & interfaces 6.4 (2014): 2980-2986.
[ 28] Chithambararaj, A., and A. C. Bose. "Role of synthesis variables on controlled nucleation and growth of hexagonal molybdenum oxide nanocrystals: investigation on thermal and optical properties." CrystEngComm 16.27 (2014): 6175-6186.
[ 29] Liu, J. et al.” Low-temperature MoO3 film from a facile synthetic route for an efficient anode interfacial layer in organic optoelectronic devices” . Mater. Chem. C, 2014, 2,158
[ 30] Song, G. et al. "Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells." ACS applied materials & interfaces 6.6 (2014): 3915-3922.
[ 31] Dighore, N. R. et al.” Electrochemical Synthesis of MoO3 Nanoparticles Effect of Temperature Convert to MoO3 Nanorods” Int. Journal of Engineering Research and Applications (2014):135-139
[ 32] Koike, K. et al. "Characteristics of MoO3 films grown by molecular beam epitaxy." Japanese Journal of Applied Physics 53.5S1 (2014): 05FJ02.
[ 33] Manal Y.A. et al. "Two dimensional α-MoO 3 nanoflakes obtained using solvent-assisted grinding and sonication method: Application for H 2 gas sensing." Sensors and Actuators B: Chemical 192 (2014): 196-204.
[ 34] Chithambararaj, A. et al. "Preparation of h-MoO 3 and α-MoO 3 nanocrystals: comparative study on photocatalytic degradation of methylene blue under visible light irradiation." Physical Chemistry Chemical Physics 15.35 (2013): 14761-14769.
[ 35] Trofim, V. et al. "Properties of MoO3 nanostructures grown via thermal Oxidation." The 2nd International Conference on Nanotechnologies and Biomedical Engineering, Chisinau, Republic of Moldova. 2013.
[ 36] Balendhran, S. et al. "Enhanced charge carrier mobility in two?dimensional high dielectric molybdenum oxide." Advanced Materials 25.1 (2013): 109-114.
[ 37] Chiang, T. H., and H. C. Yeh. "The synthesis of α-MoO3 by ethylene glycol." Materials 6.10 (2013): 4609-4625.
[ 38] Noerochim, L.et al. "Rapid synthesis of free-standing MoO 3/Graphene films by the microwave hydrothermal method as cathode for bendable lithium batteries." Journal of Power Sources 228 (2013): 198-205.
[ 39] Rao, M. C. et al. "Structural stoichiometry and phase transitions of MoO3 thin films for solid state microbatteries." Research Journal of Recent Sciences ISSN 2277 (2013): 2502.
[ 40] Subbarayudu, S., V. Madhavi, and S. Uthanna. "Post-deposition annealing controlled structural and optical properties of RF magnetron sputtered MoO3 films." Advanced Materials Letters 4.8 (2013): 637-642.
[ 41] Balendhran, S. et al. "Two?dimensional molybdenum trioxide and dichalcogenides." Advanced Functional Materials 23.32 (2013): 3952-3970.
[ 42] Chithambararaj, A. et al. "Flower-like hierarchical h-MoO 3: new findings of efficient visible light driven nano photocatalyst for methylene blue degradation."Catalysis Science & Technology 3.5 (2013): 1405-1414.
[ 43] Wang, F. et al. “Electrode materials for aqueous asymmetric
Supercapacitors” RSC Advances, 2013, 3,13059
[ 44] Lee, K. H. et al. "Single?Crystalline Mesoporous Molybdenum Nitride Nanowires with Improved Electrochemical Properties." Journal of the American Ceramic Society 96.1 (2013): 37-39.
[ 45] Alam, M. W. et al. "Temperature Dependence of Barrier Height and Performance Enhancement of Pentacene Based Organic Thin Film Transistor with Bi-Layer MoO3/Au Electrodes." Current Nanoscience 9.3 (2013): 407-410.
[ 46] Krishnamoorthy, K. et al. "New function of molybdenum trioxide nanoplates: toxicity towards pathogenic bacteria through membrane stress."Colloids and Surfaces B: Biointerfaces 112 (2013): 521-524.
[ 47] Yao, D. D. et al. "Electrodeposited α-and β-phase MoO3 films and investigation of their gasochromic properties." Crystal Growth & Design 12.4 (2012): 1865-1870.
[ 48] Huang, Q. et al. "MoO3–x?Based Hybrids with Tunable Localized Surface Plasmon Resonances: Chemical Oxidation Driving Transformation from Ultrathin Nanosheets to Nanotubes." Chemistry–A European Journal18.48 (2012): 15283-15287.
[ 49] Meyer, J. et al. "Transition metal oxides for organic electronics: energetics, device physics and applications." Advanced Materials 24.40 (2012): 5408-5427.
[ 50] Arafat, M. M. et al. "Gas sensors based on one dimensional nanostructured metal-oxides: a review." Sensors 12.6 (2012): 7207-7258.
[ 51] Song, L. X. et al. "Formation, structure and physical properties of a series of α-MoO 3 nanocrystals: from 3D to 1D and 2D." CrystEngComm 14.8 (2012): 2675-2682.
[ 52] Wu, H. B. et al. "Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries." Nanoscale 4.8 (2012): 2526-2542.
[ 53] Murase, S. and Y. Yang. "Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method." Advanced Materials 24.18 (2012): 2459-2462.
[ 54] Ellefson, C. A. et al. "Synthesis and applications of molybdenum (IV) oxide." Journal of Materials Science 47.5 (2012): 2057-2071.
[ 55] Chang, W. C. et al. "Post-deposition annealing control of phase and texture for the sputtered MoO 3 films." CrystEngComm 13.16 (2011): 5125-5132.
[ 56] Cai, L. P. M. Rao, and X. Zheng. "Morphology-controlled flame synthesis of single, branched, and flower-like α-MoO3 nanobelt arrays." Nano letters 11.2 (2011): 872-877.
[ 57] Klinbumrung, A., T. Thongtem and S. Thongtem. "Characterization of orthorhombic α-MoO 3 microplates produced by a microwave plasma process." Journal of Nanomaterials 2012 (2012): 10.
[ 58] Mai, L. et al. "Molybdenum oxide nanowires: synthesis & properties."Materials Today 14.7 (2011): 346-353.
[ 59] Stubhan, T. et al. "High shunt resistance in polymer solar cells comprising a MoO3 hole extraction layer processed from nanoparticle suspension."Applied Physics Letters 98.25 (2011): 253308.
[ 60] Diao, Z. et al. "Catalytic Activity of Biomorphic α-MoO3 in the Degradation of Methyl Violet Dye." Environmental engineering science 29.9 (2012): 860-865.
[ 61] Meyer, Jens, et al. "MoO3 Films Spin?Coated from a Nanoparticle Suspension for Efficient Hole?Injection in Organic Electronics." Advanced Materials 23.1 (2011): 70-73.
[ 62] Vasilopoulou, M. et al. "Reduced transition metal oxides as electron injection layers in hybrid-PLEDs." Microelectronic Engineering 90 (2012): 59-61.
[ 63] Troitskaia I. B. et al.” Growth and structural properties of _-MoO3 (0 1 0) microplates with atomically flat surface” Materials Science and Engineering B 174 (2010) 159–163
[ 64] Meyer, J. et al. "Effect of contamination on the electronic structure and hole-injection properties of MoO3/organic semiconductor interfaces." Applied Physics Letters 96.13 (2010): 133308.
[ 65] Brezesinski, T. et al. "Ordered mesoporous [alpha]-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors." Nature materials9.2 (2010): 146-151.
[ 66] Oka, N. et al. "Study on MoO3-x films deposited by reactive sputtering for organic light-emitting diodes." J. Vac. Sci. Technol. A 28.4 (2010): 886.
[ 67] Chen, Y. et al. "Single-crystalline orthorhombic molybdenum oxide nanobelts: synthesis and photocatalytic properties." CrystEngComm 12.11 (2010): 3740-3747.
[ 68] Liu, F. et al. "Efficient polymer photovoltaic cells using solution-processed MoO 3 as anode buffer layer." Solar Energy Materials and Solar Cells 94.5 (2010): 842-845.
[ 69] Pan, W. et al. "Structure, Optical, and Catalytic Properties of Novel Hexagonal Metastable h-MoO3 Nano-and Microrods Synthesized with Modified Liquid-Phase Processes." Chemistry of Materials 22.22 (2010): 6202-6208.
[ 70] Lunk, H. J. et al. "“Hexagonal Molybdenum Trioxide” Known for 100 Years and Still a Fount of New Discoveries." Inorganic chemistry 49.20 (2010): 9400-9408.
[ 71] Lin, S. Y. et al. "Electrochromic properties of MoO3 thin films derived by a sol–gel process." Journal of sol-gel science and technology 53.1 (2010): 51-58.
[ 72] Chernova, N. A. et al. "Layered vanadium and molybdenum oxides: batteries and electrochromics." Journal of Materials Chemistry 19.17 (2009): 2526-2552.
[ 73] Krishnan, C. V. et al. "Formation of molybdenum oxide nanostructures controlled by poly (ethylene oxide)." Chinese Journal of Polymer Science 27.01 (2009): 11-22.
[ 74] Stoyanova, A. et al. "Synthesis and structural characterization of MoO3 phases obtained from molybdic acid by addition of HNO3 and H2O2." Journal of Optoelectronics and Advanced Materials 11.8 (2009): 1127.
[ 75] Nirupama, V. et al. "Characterization of molybdenum oxide films prepared by bias magnetron sputtering." Journal of optoelectronics and advanced materials11.3 (2009): 320-325.
[ 76] Liu, D. et al. "High-pressure Raman scattering and x-ray diffraction of phase transitions in MoO3." Journal of applied physics 105.2 (2009): 023513.
[ 77] Kroger, M. et al. "Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films." Applied physics letters95.12 (2009): 123301.
[ 78] Zheng, L. et al. "Novel metastable hexagonal MoO3 nanobelts: synthesis, photochromic, and electrochromic properties." Chemistry of Materials 21.23 (2009): 5681-5690.
[ 79] Cheng, L. et al. "Single?Crystalline Molybdenum Trioxide Nanoribbons: Photocatalytic, Photoconductive, and Electrochemical Properties." Chemistry–A European Journal 15.10 (2009): 2310-2316.
[ 80] Kim, W. S., H. C. Kim, and S. H. Hong. "Gas sensing properties of MoO3 nanoparticles synthesized by solvothermal method."Journal of Nanoparticle Research 12.5 (2010): 1889-1896.
[ 81] Xu, Q. et al. "Surface phase composition of iron molybdate catalysts studied by UV Raman spectroscopy." The Journal of Physical Chemistry C112.25 (2008): 9387-9393.
[ 82] Mai, L. Q. et al. "Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries." Advanced Materials 19.21 (2007): 3712-3716.
[ 83] Kanno, H. et al. "White stacked electrophosphorescent organic light?emitting devices employing MoO3 as a charge?generation layer." Advanced materials 18.3 (2006): 339-342.
[ 84] Li, Y. X. et al. "Nanostructured molybdenum oxide gas sensors." 2006 5th IEEE Conference on Sensors. IEEE, 2006.
[ 85] Prasad, A. K., D. J. Kubinski and P. I. Gouma. "Comparison of sol–gel and ion beam deposited MoO 3 thin film gas sensors for selective ammonia detection."Sensors and Actuators B: Chemical 93.1 (2003): 25-30.
[ 86] Marchenko, V. M. et al. "Laser distillation synthesis of crystalline MoO3."Laser Processing of Advanced Materials and Laser Microtechnologies. International Society for Optics and Photonics, 2003.
[ 87] Lou, X. W., and H. C. Zeng. "Hydrothermal synthesis of α-MoO3 nanorods via acidification of ammonium heptamolybdate tetrahydrate."Chemistry of materials 14.11 (2002): 4781-4789.
.[ 88] Choi, J. G. and L. T. Thompson. "XPS study of as-prepared and reduced molybdenum oxides." Applied Surface Science 93.2 (1996): 143-149.
[ 89] Guo, J., P. Zavalij and M. S. Whittingham. "Metastable hexagonal molybdates: hydrothermal preparation, structure, and reactivity."Journal of Solid State Chemistry 117.2 (1995): 323-332.
[ 90] Balendhran, S. "Devices and systems based on two dimensional MoO3 and MoS2." (2013).
[91] Li, W. et al. "Vapor-transportation preparation and reversible lithium intercalation/deintercalation of α-MoO3 microrods." The Journal of Physical Chemistry B 110.1 (2006): 119-124.
[ 92] Wu, H. B., M. N. Chan, and C. K. Chan. "FTIR characterization of polymorphic transformation of ammonium nitrate." Aerosol Science and Technology 41.6 (2007): 581-588.
?
指導教授 何正榮 審核日期 2017-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明