參考文獻 |
Andreae, M. O. (2007), Aerosols Before Pollution, Science, 315(5808), 50-51, doi:10.1126/science.1136529.
Aoki, N., S. Inomata, and H. Tanimoto (2007), Detection of C-1-C-5 alkyl nitrates by proton transfer reaction time-of-flight mass spectrometry, International Journal of Mass Spectrometry, 263(1), 12-21, doi:10.1016/j.ijms.2006.11.018.
Artaxo, P., L. V. Rizzo, J. F. Brito, H. M. J. Barbosa, A. Arana, E. T. Sena, G. G. Cirino, W. Bastos, S. T. Martin, and M. O. Andreae (2013), Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions, Faraday Discussions, 165(0), 203-235, doi:10.1039/C3FD00052D.
Aruffo, E., et al. (2014), Aircraft observations of the lower troposphere above a megacity: Alkyl nitrate and ozone chemistry, Atmospheric Environment, 94, 479-488, doi:10.1016/j.atmosenv.2014.05.040.
Bajtarevic, A., et al. (2009), Noninvasive detection of lung cancer by analysis of exhaled breath, Bmc Cancer, 9, 16, doi:10.1186/1471-2407-9-348.
Baker, J. W., and D. M. Easty (1952), 217. Hydrolytic decomposition of esters of nitric acid. Part I. General experimental techniques. Alkaline hydrolysis and neutral solvolysis of methyl, ethyl, isopropyl, and tert.-butyl nitrates in aqueous alcohol, Journal of the Chemical Society (Resumed)(0), 1193-1207, doi:10.1039/JR9520001193.
Balducci, C., and A. Cecinato (2010), Particulate organic acids in the atmosphere of Italian cities: Are they environmentally relevant?, Atmospheric Environment, 44(5), 652-659, doi:10.1016/j.atmosenv.2009.11.015.
Bauer, H., M. Claeys, R. Vermeylen, E. Schueller, G. Weinke, A. Berger, and H. Puxbaum (2008), Arabitol and mannitol as tracers for the quantification of airborne fungal spores, Atmospheric Environment, 42(3), 588-593, doi:http://dx.doi.org/10.1016/j.atmosenv.2007.10.013.
Beaver, M. R., et al. (2012), Importance of biogenic precursors to the budget of organic nitrates: observations of multifunctional organic nitrates by CIMS and TD-LIF during BEARPEX 2009, Atmos. Chem. Phys., 12(13), 5773-5785, doi:10.5194/acp-12-5773-2012.
Berkemeier, T., M. Ammann, T. F. Mentel, U. Poschl, and M. Shiraiwa (2016), Organic Nitrate Contribution to New Particle Formation and Growth in Secondary Organic Aerosols from α-Pinene Ozonolysis, Environmental Science & Technology, doi:10.1021/acs.est.6b00961.
Betts, R. A., C. D. Jones, J. R. Knight, R. F. Keeling, and J. J. Kennedy (2016), El Nino and a record CO2 rise, Nature Clim. Change, advance online publication, doi:10.1038/nclimate3063
http://www.nature.com/nclimate/journal/vaop/ncurrent/abs/nclimate3063.html#supplementary-information.
Biasioli, F., F. Gasperi, C. Yeretzian, and T. D. Mark (2011), PTR-MS monitoring of VOCs and BVOCs in food science and technology, TrAC Trends in Analytical Chemistry, 30(7), 968-977, doi:http://dx.doi.org/10.1016/j.trac.2011.03.009.
Blake, R. S., P. S. Monks, and A. M. Ellis (2009), Proton-Transfer Reaction Mass Spectrometry, Chemical Reviews, 109(3), 861-896, doi:10.1021/cr800364q.
Borduas, N., G. da Silva, J. G. Murphy, and J. P. D. Abbatt (2015), Experimental and Theoretical Understanding of the Gas Phase Oxidation of Atmospheric Amides with OH Radicals: Kinetics, Products, and Mechanisms, The Journal of Physical Chemistry A, 119(19), 4298-4308, doi:10.1021/jp503759f.
Brown, S. G., T. Lee, P. T. Roberts, and J. L. Collett (2013), Variations in the OM/OC ratio of urban organic aerosol next to a major roadway, Journal of the Air & Waste Management Association, 63(12), 1422-1433, doi:10.1080/10962247.2013.826602.
Browne, E. C., et al. (2013), Observations of total RONO2 over the boreal forest: NOx sinks and HNO3 sources, Atmospheric Chemistry and Physics, 13(9), 4543-4562, doi:10.5194/acp-13-4543-2013.
Bruns, E. A., V. Perraud, A. Zelenyuk, M. J. Ezell, S. N. Johnson, Y. Yu, D. Imre, B. J. Finlayson-Pitts, and M. L. Alexander (2010), Comparison of FTIR and Particle Mass Spectrometry for the Measurement of Particulate Organic Nitrates, Environmental Science & Technology, 44(3), 1056-1061, doi:10.1021/es9029864.
Cahill, T. M. (2010), Size-Resolved Organic Speciation of Wintertime Aerosols in California’s Central Valley, Environmental Science & Technology, 44(7), 2315-2321, doi:10.1021/es902936v.
Cahill, T. M., V. Y. Seaman, M. J. Charles, R. Holzinger, and A. H. Goldstein (2006), Secondary organic aerosols formed from oxidation of biogenic volatile organic compounds in the Sierra Nevada Mountains of California, Journal of Geophysical Research-Atmospheres, 111(D16), 14, doi:10.1029/2006jd007178.
Cai, W., et al. (2014), Increasing frequency of extreme El Nino events due to greenhouse warming, Nature Clim. Change, 4(2), 111-116, doi:10.1038/nclimate2100
Canagaratna, M. R., et al. (2007), Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer, Mass Spectrometry Reviews, 26(2), 185-222, doi:10.1002/mas.20115.
Chatterjee, A., A. Adak, A. K. Singh, M. K. Srivastava, S. K. Ghosh, S. Tiwari, P. C. S. Devara, and S. Raha (2010), Aerosol Chemistry over a High Altitude Station at Northeastern Himalayas, India, Plos One, 5(6), 20, doi:10.1371/journal.pone.0011122.
Chaubey, J. P., K. K. Moorthy, S. S. Babu, and M. M. Gogoi (2013), Spatio-temporal variations in aerosol properties over the oceanic regions between coastal India and Antarctica, Journal of Atmospheric and Solar-Terrestrial Physics, 104(0), 18-28, doi:http://dx.doi.org/10.1016/j.jastp.2013.08.004.
Chen, S. C., S. C. Hsu, C. J. Tsai, C. C. K. Chou, N. H. Lin, C. T. Lee, G. D. Roam, and D. Y. H. Pui (2013), Dynamic variations of ultrafine, fine and coarse particles at the Lu-Lin background site in East Asia, Atmospheric Environment, 78, 154-162, doi:10.1016/j.atmosenv.2012.05.029.
Cheng, C. H., C. Y. Hung, C. P. Chen, and C. W. Pei (2013), Biomass carbon accumulation in aging Japanese cedar plantations in Xitou, central Taiwan, Bot. Stud., 54, 9, doi:10.1186/1999-3110-54-60.
Cheng, Y., J. R. Brook, S.-M. Li, and A. Leithead (2011), Seasonal variation in the biogenic secondary organic aerosol tracer cis-pinonic acid: Enhancement due to emissions from regional and local biomass burning, Atmospheric Environment, 45(39), 7105-7112, doi:http://dx.doi.org/10.1016/j.atmosenv.2011.09.036.
Cheng, Y., K. B. He, F. K. Duan, M. Zheng, Y. L. Ma, and J. H. Tan (2009), Measurement of semivolatile carbonaceous aerosols and its implications: A review, Environment International, 35(3), 674-681, doi:http://dx.doi.org/10.1016/j.envint.2008.11.007.
Chio, C. P., M. T. Cheng, and C. F. Wang (2004), Source apportionment to PM10 in different air quality conditions for Taichung urban and coastal areas, Taiwan, Atmospheric Environment, 38(39), 6893-6905, doi:10.1016/j.atmosenv.2004.08.041.
Chou, C. C. K., et al. (2010), Seasonal variation and spatial distribution of carbonaceous aerosols in Taiwan, Atmospheric Chemistry and Physics, 10(19), 9563-9578, doi:10.5194/acp-10-9563-2010.
Chow, J. C., J. G. Watson, L. C. Pritchett, W. R. Pierson, C. A. Frazier, and R. G. Purcell (1993), THE DRI THERMAL OPTICAL REFLECTANCE CARBON ANALYSIS SYSTEM - DESCRIPTION, EVALUATION AND APPLICATIONS IN UNITED-STATES AIR-QUALITY STUDIES, Atmospheric Environment Part a-General Topics, 27(8), 1185-1201, doi:10.1016/0960-1686(93)90245-t.
Chow, J. C., J. Z. Yu, J. G. Watson, S. S. Hang Ho, T. L. Bohannan, M. D. Hays, and K. K. Fung (2007), The application of thermal methods for determining chemical composition of carbonaceous aerosols: A review, Journal of Environmental Science and Health, Part A, 42(11), 1521-1541, doi:10.1080/10934520701513365.
Chuang, M.-T., C. C. K. Chou, K. Sopajaree, N.-H. Lin, J.-L. Wang, G.-R. Sheu, Y.-J. Chang, and C.-T. Lee (2013), Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment, Atmospheric Environment, 78, 72-81, doi:http://dx.doi.org/10.1016/j.atmosenv.2012.06.056.
Cong, Z., K. Kawamura, S. Kang, and P. Fu (2015), Penetration of biomass-burning emissions from South Asia through the Himalayas: new insights from atmospheric organic acids, Scientific Reports, 5, 9580, doi:10.1038/srep09580
http://www.nature.com/articles/srep09580#supplementary-information.
Dal Maso, M., A. Hyvarinen, M. Komppula, P. Tunved, V. M. Kerminen, H. Lihavainen, Y. Viisanen, H. C. Hansson, and M. Kulmala (2008), Annual and interannual variation in boreal forest aerosol particle number and volume concentration and their connection to particle formation, Tellus Ser. B-Chem. Phys. Meteorol., 60(4), 495-508, doi:10.1111/j.1600-0889.2008.00366.x.
Darer, A. I., N. C. Cole-Filipiak, A. E. O′Connor, and M. J. Elrod (2011), Formation and Stability of Atmospherically Relevant Isoprene-Derived Organosulfates and Organonitrates, Environmental Science & Technology, 45(5), 1895-1902, doi:10.1021/es103797z.
Day, D. A., M. B. Dillon, P. J. Wooldridge, J. A. Thornton, R. S. Rosen, E. C. Wood, and R. C. Cohen (2003), On alkyl nitrates, O-3, and the "missing NOy", Journal of Geophysical Research-Atmospheres, 108(D16), 10, doi:10.1029/2003jd003685.
Day, D. A., S. Liu, L. M. Russell, and P. J. Ziemann (2010), Organonitrate group concentrations in submicron particles with high nitrate and organic fractions in coastal southern California, Atmospheric Environment, 44(16), 1970-1979, doi:10.1016/j.atmosenv.2010.02.045.
de Gouw, J., and C. Warneke (2007), Measurements of volatile organic compounds in the earth′s atmosphere using proton-transfer-reaction mass spectrometry, Mass Spectrometry Reviews, 26(2), 223-257, doi:10.1002/mas.20119.
Deshpande, C. G., and A. K. Kamra (2014), Physical properties of the arctic summer aerosol particles in relation to sources at Ny-Alesund, Svalbard, J. Earth Syst. Sci., 123(1), 201-212.
Ding, X., M. Zheng, L. P. Yu, X. L. Zhang, R. J. Weber, B. Yan, A. G. Russell, E. S. Edgerton, and X. M. Wang (2008), Spatial and seasonal trends in biogenic secondary organic aerosol tracers and water-soluble organic carbon in the southeastern United States, Environmental Science & Technology, 42(14), 5171-5176, doi:10.1021/es7032636.
Eatough, D. J., R. W. Long, W. K. Modey, and N. L. Eatough (2003), Semi-volatile secondary organic aerosol in urban atmospheres: meeting a measurement challenge, Atmospheric Environment, 37(9–10), 1277-1292, doi:http://dx.doi.org/10.1016/S1352-2310(02)01020-8.
Eddingsaas, N. C., C. L. Loza, L. D. Yee, M. Chan, K. A. Schilling, P. S. Chhabra, J. H. Seinfeld, and P. O. Wennberg (2012), alpha-pinene photooxidation under controlled chemical conditions - Part 2: SOA yield and composition in low- and high-NOx environments, Atmospheric Chemistry and Physics, 12(16), 7413-7427, doi:10.5194/acp-12-7413-2012.
Edtbauer, A., E. Hartungen, A. Jordan, G. Hanel, J. Herbig, S. Jurschik, M. Lanza, K. Breiev, L. Mark, and P. Sulzer (2014), Theory and practical examples of the quantification of CH4, CO, O2, and CO2 with an advanced proton-transfer-reaction/selective-reagent-ionization instrument (PTR/SRI-MS), International Journal of Mass Spectrometry, 365–366, 10-14, doi:http://dx.doi.org/10.1016/j.ijms.2013.11.014
Ehn, M., et al. (2014), A large source of low-volatility secondary organic aerosol, Nature, 506(7489), 476-479, doi:10.1038/nature13032.
Eichler, P., M. Muller, B. D′Anna, and A. Wisthaler (2015), A novel inlet system for online chemical analysis of semi-volatile submicron particulate matter, Atmospheric Measurement Techniques, 8(3), 1353-1360, doi:10.5194/amt-8-1353-2015.
Falkovich, A. H., and Y. Rudich (2001), Analysis of semivolatile organic compounds in atmospheric aerosols by direct sample introduction thermal desorption GC/MS, Environmental Science & Technology, 35(11), 2326-2333, doi:10.1021/es000280i.
Farmer, D. K., A. Matsunaga, K. S. Docherty, J. D. Surratt, J. H. Seinfeld, P. J. Ziemann, and J. L. Jimenez (2010), Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry, Proceedings of the National Academy of Sciences of the United States of America, 107(15), 6670-6675, doi:10.1073/pnas.0912340107.
Fountoukis, C., and A. Nenes (2007), ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+;Ca2+;Mg2+;NH4+;Na+;SO42-;NO3-;Cl;H2O aerosols, Atmos. Chem. Phys., 7(17), 4639-4659, doi:10.5194/acp-7-4639-2007.
Fry, J. L., et al. (2013), Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011, Atmospheric Chemistry and Physics, 13(17), 8585-8605, doi:10.5194/acp-13-8585-2013.
Fu, P. Q., et al. (2012), Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning, Atmospheric Chemistry and Physics, 12(18), 8359-8375, doi:10.5194/acp-12-8359-2012.
Fu, P. Q., K. Kawamura, K. Okuzawa, S. G. Aggarwal, G. H. Wang, Y. Kanaya, and Z. F. Wang (2008), Organic molecular compositions and temporal variations of summertime mountain aerosols over Mt. Tai, North China Plain, Journal of Geophysical Research-Atmospheres, 113(D19), 20, doi:10.1029/2008jd009900.
Graham, B., O. L. Mayol-Bracero, P. Guyon, G. C. Roberts, S. Decesari, M. C. Facchini, P. Artaxo, W. Maenhaut, P. Koll, and M. O. Andreae (2002), Water-soluble organic compounds in biomass burning aerosols over Amazonia - 1. Characterization by NMR and GC-MS, Journal of Geophysical Research-Atmospheres, 107(D20), 16, doi:10.1029/2001jd000336.
Grover, B. D., M. Kleinman, N. L. Eatough, D. J. Eatough, R. A. Cary, P. K. Hopke, and W. E. Wilson (2008), Measurement of Fine Particulate Matter Nonvolatile and Semi-Volatile Organic Material with the Sunset Laboratory Carbon Aerosol Monitor, Journal of the Air & Waste Management Association (Air & Waste Management Association), 58(1), 72-77, doi:10.3155/1047-3289.58.1.72.
Han, J. S., K. J. Moon, S. J. Lee, Y. J. Kim, S. Y. Ryu, S. S. Cliff, and S. M. Yi (2006), Size-resolved source apportionment of ambient particles by positive matrix factorization at Gosan background site in East Asia, Atmos. Chem. Phys., 6(1), 211-223, doi:10.5194/acp-6-211-2006
Han, Y., Y. Iwamoto, T. Nakayama, K. Kawamura, and M. Mochida (2014), Formation and evolution of biogenic secondary organic aerosol over a forest site in Japan, Journal of Geophysical Research: Atmospheres, 119(1), 2013JD020390, doi:10.1002/2013JD020390.
Hansel, A. K., F. S. Ehrenhauser, N. K. Richards-Henderson, C. Anastasio, and K. T. Valsaraj (2015), Aqueous-phase oxidation of green leaf volatiles by hydroxyl radical as a source of SOA: Product identification from methyl jasmonate and methyl salicylate oxidation, Atmospheric Environment, 102, 43-51, doi:10.1016/j.atmosenv.2014.11.055.
Hartungen, E. v., A. Wisthaler, T. Mikoviny, D. Jaksch, E. Boscaini, P. J. Dunphy, and T. D. Mark (2004), Proton-transfer-reaction mass spectrometry (PTR-MS) of carboxylic acids: Determination of Henry′s law constants and axillary odour investigations, International Journal of Mass Spectrometry, 239(2–3), 243-248, doi:http://dx.doi.org/10.1016/j.ijms.2004.09.009.
Hawthorne, S. B., M. S. Krieger, D. J. Miller, and M. B. Mathiason (1989), COLLECTION AND QUANTITATION OF METHOXYLATED PHENOL TRACERS FOR ATMOSPHERIC-POLLUTION FROM RESIDENTIAL WOOD STOVES, Environmental Science & Technology, 23(4), 470-475, doi:10.1021/es00181a013.
Hays, M. D., and R. J. Lavrich (2007), Developments in direct thermal extraction gas chromatography-mass spectrometry of fine aerosols, TrAC Trends in Analytical Chemistry, 26(2), 88-102, doi:http://dx.doi.org/10.1016/j.trac.2006.08.007.
Helle?n, H., J. Dommen, A. Metzger, A. Gascho, J. Duplissy, T. Tritscher, A. S. H. Prevot, and U. Baltensperger (2008), Using Proton Transfer Reaction Mass Spectrometry for Online Analysis of Secondary Organic Aerosols, Environmental Science & Technology, 42(19), 7347-7353, doi:10.1021/es801279m.
Hersey, S. P., J. S. Craven, K. A. Schilling, A. R. Metcalf, A. Sorooshian, M. N. Chan, R. C. Flagan, and J. H. Seinfeld (2011), The Pasadena Aerosol Characterization Observatory (PACO): chemical and physical analysis of the Western Los Angeles basin aerosol, Atmos. Chem. Phys., 11(15), 7417-7443, doi:10.5194/acp-11-7417-2011.
Holman, J. P. (1972), Heat Transfer, McGraw-Hill, New York.
Holzinger, R., A. H. Goldstein, P. L. Hayes, J. L. Jimenez, and J. Timkovsky (2013), Chemical evolution of organic aerosol in Los Angeles during the CalNex 2010 study, Atmos. Chem. Phys., 13(19), 10125-10141, doi:10.5194/acp-13-10125-2013.
Holzinger, R., A. Kasper-Giebl, M. Staudinger, G. Schauer, and T. Rockmann (2010a), Analysis of the chemical composition of organic aerosol at the Mt. Sonnblick observatory using a novel high mass resolution thermal-desorption proton-transfer-reaction mass-spectrometer (hr-TD-PTR-MS), Atmos. Chem. Phys., 10(20), 10111-10128, doi:10.5194/acp-10-10111-2010.
Holzinger, R., J. Williams, F. Herrmann, J. Lelieveld, N. M. Donahue, and T. Rockmann (2010b), Aerosol analysis using a Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS): a new approach to study processing of organic aerosols, Atmospheric Chemistry and Physics, 10(5), 2257-2267.
Hoyle, C. R., et al. (2011), A review of the anthropogenic influence on biogenic secondary organic aerosol, Atmos. Chem. Phys., 11(1), 321-343, doi:10.5194/acp-11-321-2011.
Hsieh, L.-Y., C.-L. Chen, M.-W. Wan, C.-H. Tsai, and Y. I. Tsai (2008), Speciation and temporal characterization of dicarboxylic acids in PM2.5 during a PM episode and a period of non-episodic pollution, Atmospheric Environment, 42(28), 6836-6850, doi:http://dx.doi.org/10.1016/j.atmosenv.2008.05.021.
Hsieh, L. Y., S. C. Kuo, C. L. Chen, and Y. I. Tsai (2007), Origin of low-molecular-weight dicarboxylic acids and their concentration and size distribution variation in suburban aerosol, Atmospheric Environment, 41(31), 6648-6661, doi:10.1016/j.atmosenv.2007.04.014.
Hsu, C.-L., C.-Y. Cheng, C.-T. Lee, and W.-H. Ding (2007), Derivatization procedures and determination of levoglucosan and related monosaccharide anhydrides in atmospheric aerosols by gas chromatography–mass spectrometry, Talanta, 72(1), 199-205, doi:http://dx.doi.org/10.1016/j.talanta.2006.10.018.
Hu, Q.-H., Z.-Q. Xie, X.-M. Wang, H. Kang, and P. Zhang (2013), Levoglucosan indicates high levels of biomass burning aerosols over oceans from the Arctic to Antarctic, Sci. Rep., 3, doi:10.1038/srep03119
http://www.nature.com/srep/2013/131101/srep03119/abs/srep03119.html#supplementary-information.
Hughes, L. S., G. R. Cass, J. Gone, M. Ames, and I. Olmez (1998), Physical and Chemical Characterization of Atmospheric Ultrafine Particles in the Los Angeles Area, Environmental Science & Technology, 32(9), 1153-1161, doi:10.1021/es970280r.
Iinuma, Y., G. Engling, H. Puxbaum, and H. Herrmann (2009), A highly resolved anion-exchange chromatographic method for determination of saccharidic tracers for biomass combustion and primary bio-particles in atmospheric aerosol, Atmospheric Environment, 43(6), 1367-1371, doi:http://dx.doi.org/10.1016/j.atmosenv.2008.11.020.
Jayne, J. T., D. C. Leard, X. Zhang, P. Davidovits, K. A. Smith, C. E. Kolb, and D. R. Worsnop (2000), Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles, Aerosol Science and Technology, 33(1-2), 49-70, doi:10.1080/027868200410840.
Jia, C., and S. Batterman (2010), A Critical Review of Naphthalene Sources and Exposures Relevant to Indoor and Outdoor Air, International Journal of Environmental Research and Public Health, 7(7), 2903.
Jimenez, O. P., R. M. P. Pastor, and S. G. Alonso (2010), Assessment uncertainty associated to the analysis of organic compounds linked to particulate matter of atmospheric aerosols, Talanta, 80(3), 1121-1128, doi:http://dx.doi.org/10.1016/j.talanta.2009.08.036.
Kalberer, M., J. Yu, D. R. Cocker, R. C. Flagan, and J. H. Seinfeld (2000), Aerosol Formation in the Cyclohexene-Ozone System, Environmental Science & Technology, 34(23), 4894-4901, doi:10.1021/es001180f.
Kamens, R., M. Jang, C.-J. Chien, and K. Leach (1999), Aerosol Formation from the Reaction of α-Pinene and Ozone Using a Gas-Phase Kinetics-Aerosol Partitioning Model, Environmental Science & Technology, 33(9), 1430-1438, doi:10.1021/es980725r.
Kanakidou, M., et al. (2005), Organic aerosol and global climate modelling: a review, Atmospheric Chemistry and Physics, 5, 1053-1123.
Kanakidou, M., K. Tsigaridis, F. J. Dentener, and P. J. Crutzen (2000), Human-activity-enhanced formation of organic aerosols by biogenic hydrocarbon oxidation, Journal of Geophysical Research-Atmospheres, 105(D7), 9243-9254, doi:10.1029/1999jd901148.
Kanawade, V. P., B. T. Jobson, A. B. Guenther, M. E. Erupe, S. N. Pressley, S. N. Tripathi, and S. H. Lee (2011), Isoprene suppression of new particle formation in a mixed deciduous forest, Atmos. Chem. Phys., 11(12), 6013-6027, doi:10.5194/acp-11-6013-2011.
Kawamura, K., Y. Imai, and L. A. Barrie (2005), Photochemical production and loss of organic acids in high Arctic aerosols during long-range transport and polar sunrise ozone depletion events, Atmospheric Environment, 39(4), 599-614, doi:http://dx.doi.org/10.1016/j.atmosenv.2004.10.020.
Kawamura, K., and O. Yasui (2005), Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere, Atmospheric Environment, 39(10), 1945-1960, doi:http://dx.doi.org/10.1016/j.atmosenv.2004.12.014.
Kecorius, S., et al. (2015), NOCTURNAL AEROSOL PARTICLE FORMATION IN THE NORTH CHINA PLAIN, Lithuanian Journal of Physics, 55(1), 44-53.
Kirkby, J., et al. (2011), Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation, Nature, 476(7361), 429-433, doi:http://www.nature.com/nature/journal/v476/n7361/abs/nature10343.html#supplementary-information.
Kitanovski, Z., I. Grgic, R. Vermeylen, M. Claeys, and W. Maenhaut (2012), Liquid chromatography tandem mass spectrometry method for characterization of monoaromatic nitro-compounds in atmospheric particulate matter, Journal of Chromatography A, 1268, 35-43, doi:10.1016/j.chroma.2012.10.021.
Koponen, I. K., A. Virkkula, R. Hillamo, V.-M. Kerminen, and M. Kulmala (2002), Number size distributions and concentrations of marine aerosols: Observations during a cruise between the English Channel and the coast of Antarctica, Journal of Geophysical Research: Atmospheres, 107(D24), 4753, doi:10.1029/2002JD002533.
Kroll, J. H., and J. H. Seinfeld (2008), Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere, Atmospheric Environment, 42(16), 3593-3624, doi:http://dx.doi.org/10.1016/j.atmosenv.2008.01.003.
Kulmala, M., M. Dal Maso, J. M. Makela, L. Pirjola, M. Vakeva, P. Aalto, P. Miikkulainen, K. Hameri, and C. D. O′Dowd (2001), On the formation, growth and composition of nucleation mode particles, Tellus Ser. B-Chem. Phys. Meteorol., 53(4), 479-490, doi:10.1034/j.1600-0889.2001.530411.x.
Kyro, E. M., et al. (2014), Trends in new particle formation in eastern Lapland, Finland: effect of decreasing sulfur emissions from Kola Peninsula, Atmospheric Chemistry and Physics, 14(9), 4383-4396, doi:10.5194/acp-14-4383-2014.
Lane, D. A., S. S. Fielder, S. J. Townsend, N. J. Bunce, J. Zhu, L. Liu, B. Wiens, and P. Pond (1996), Atmospheric Photochemistry of Naphthalene: a Practical and Theoretical Approach, Polycyclic Aromatic Compounds, 9(1-4), 53-59, doi:10.1080/10406639608031201.
Laurent, J. P., and D. T. Allen (2004), Size distributions of organic functional groups in ambient aerosol collected in Houston, Texas, Aerosol Science and Technology, 38, 82-91, doi:10.1080/02786820390229561.
Lawson, S. J., P. W. Selleck, I. E. Galbally, M. D. Keywood, M. J. Harvey, C. Lerot, D. Helmig, and Z. Ristovski (2015), Seasonal in situ observations of glyoxal and methylglyoxal over the temperate oceans of the Southern Hemisphere, Atmos. Chem. Phys., 15(1), 223-240, doi:10.5194/acp-15-223-2015.
Lee, A., A. H. Goldstein, J. H. Kroll, N. L. Ng, V. Varutbangkul, R. C. Flagan, and J. H. Seinfeld (2006), Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes, Journal of Geophysical Research-Atmospheres, 111(D17), 25, doi:10.1029/2006jd007050.
Lee, B. H., et al. (2016), Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets, Proceedings of the National Academy of Sciences of the United States of America, 113(6), 1516-1521, doi:10.1073/pnas.1508108113.
Lee, S. H., L. H. Young, D. R. Benson, T. Suni, M. Kulmala, H. Junninen, T. L. Campos, D. C. Rogers, and J. Jensen (2008), Observations of nighttime new particle formation in the troposphere, Journal of Geophysical Research-Atmospheres, 113(D10), 7, doi:10.1029/2007jd009351.
Li, J. J., G. H. Wang, X. M. Wang, J. J. Cao, T. Sun, C. L. Cheng, J. J. Meng, T. F. Hu, and S. X. Liu (2013a), Abundance, composition and source of atmospheric PM 2.5 at a remote site in the Tibetan Plateau, China, 2013, 65, doi:10.3402/tellusb.v65i0.20281.
Li, L., et al. (2013b), Concentration, distribution and variation of polar organic aerosol tracers in Ya′an, a middle-sized city in western China, Atmospheric Research, 120, 29-42, doi:10.1016/j.atmosres.2012.07.024.
Liggio, J., and S. M. Li (2006), Reactive uptake of pinonaldehyde on acidic aerosols, Journal of Geophysical Research-Atmospheres, 111(D24), 12, doi:10.1029/2005jd006978.
Lindinger, W., A. Hansel, and A. Jordan (1998a), On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research, International Journal of Mass Spectrometry and Ion Processes, 173(3), 191-241, doi:http://dx.doi.org/10.1016/S0168-1176(97)00281-4.
Lindinger, W., A. Jordan, and A. Hansel (1998b), Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels, Chemical Society Reviews, 27(5), 347-375, doi:10.1039/A827347Z.
Liu, D., J. Li, Y. Zhang, Y. Xu, X. Liu, P. Ding, C. Shen, Y. Chen, C. Tian, and G. Zhang (2013), The Use of Levoglucosan and Radiocarbon for Source Apportionment of PM2.5 Carbonaceous Aerosols at a Background Site in East China, Environmental Science & Technology, 47(18), 10454-10461, doi:10.1021/es401250k.
Liu, S., J. E. Shilling, C. Song, N. Hiranuma, R. A. Zaveri, and L. M. Russell (2012), Hydrolysis of Organonitrate Functional Groups in Aerosol Particles, Aerosol Science and Technology, 46(12), 1359-1369, doi:10.1080/02786826.2012.716175.
Liu, S. C., C. Fu, C. J. Shiu, J. P. Chen, and F. Wu (2009), Temperature dependence of global precipitation extremes, Geophysical Research Letters, 36(17), doi:10.1029/2009GL040218.
Lunden, M. M., D. R. Black, M. McKay, K. L. Revzan, A. H. Goldstein, and N. J. Brown (2006), Characteristics of fine particle growth events observed above a forested ecosystem in the Sierra Nevada Mountains of California, Aerosol Science and Technology, 40(5), 373-388, doi:10.1080/02786820600631896.
Ma, Y., T. Luciani, R. A. Porter, A. T. Russell, D. Johnson, and G. Marston (2007), Organic acid formation in the gas-phase ozonolysis of alpha-pinene, Phys. Chem. Chem. Phys., 9(37), 5084-5087, doi:10.1039/b709880d.
Ma, Y., A. T. Russell, and G. Marston (2008), Mechanisms for the formation of secondary organic aerosol components from the gas-phase ozonolysis of [small alpha]-pinene, Phys. Chem. Chem. Phys., 10(29), 4294-4312, doi:10.1039/B803283A
Martin, S. T., et al. (2010), An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08), Atmospheric Chemistry and Physics, 10(23), 11415-11438, doi:10.5194/acp-10-11415-2010.
Mikoviny, T., L. Kaser, and A. Wisthaler (2010), Development and characterization of a High-Temperature Proton-Transfer-Reaction Mass Spectrometer (HT-PTR-MS), Atmos. Meas. Tech., 3(3), 537-544, doi:10.5194/amt-3-537-2010.
Miyazaki, Y., J. Jung, P. Q. Fu, Y. Mizoguchi, K. Yamanoi, and K. Kawamura (2012), Evidence of formation of submicrometer water-soluble organic aerosols at a deciduous forest site in northern Japan in summer, Journal of Geophysical Research-Atmospheres, 117, 12, doi:10.1029/2012jd018250.
Mkoma, S. L., and K. Kawamura (2013), Molecular composition of dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids in atmospheric aerosols from Tanzania, East Africa during wet and dry seasons, Atmos. Chem. Phys., 13(4), 2235-2251, doi:10.5194/acp-13-2235-2013.
Muller, K., D. van Pinxteren, A. Plewka, B. Svrcina, H. Kramberger, D. Hofmann, K. Bachmann, and H. Herrmann (2005), Aerosol characterisation at the FEBUKO upwind station Goldlauter (II): Detailed organic chemical characterisation, Atmospheric Environment, 39(23-24), 4219-4231, doi:10.1016/j.atmosenv.2005.02.008.
Nicolas, J. F., J. Crespo, E. Yubero, R. Soler, A. Carratala, and E. Mantilla (2014), Impacts on particles and ozone by transport processes recorded at urban and high-altitude monitoring stations, Science of The Total Environment, 466–467(0), 439-446, doi:http://dx.doi.org/10.1016/j.scitotenv.2013.07.060.
Nie, W., et al. (2014), Polluted dust promotes new particle formation and growth, Sci. Rep., 4, doi:10.1038/srep06634
http://www.nature.com/srep/2014/141016/srep06634/abs/srep06634.html#supplementary-information.
Noziere, B., et al. (2015a), The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges, Chemical Reviews, doi:10.1021/cr5003485.
Noziere, B., et al. (2015b), The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges, Chemical Reviews, 115(10), 3919-3983, doi:10.1021/cr5003485.
Ooki, A., K. Miura, and M. Uematsu (2003), The increase of biogenic sulfate aerosol and particle number in marine atmosphere over the northwestern North Pacific, J. Oceanogr., 59(6), 799-807, doi:10.1023/B:JOCE.0000009571.81193.5d.
Orasche, J., J. Schnelle-Kreis, G. Abbaszade, and R. Zimmermann (2011), Technical Note: In-situ derivatization thermal desorption GC-TOFMS for direct analysis of particle-bound non-polar and polar organic species, Atmospheric Chemistry and Physics, 11(17), 8977-8993, doi:10.5194/acp-11-8977-2011.
Ortega, I. K., et al. (2012), New insights into nocturnal nucleation, Atmospheric Chemistry and Physics, 12(9), 4297-4312, doi:10.5194/acp-12-4297-2012.
Park, J.-H., A. H. Goldstein, J. Timkovsky, S. Fares, R. Weber, J. Karlik, and R. Holzinger (2013), Active Atmosphere-Ecosystem Exchange of the Vast Majority of Detected Volatile Organic Compounds, Science, 341(6146), 643-647, doi:10.1126/science.1235053.
Perring, A. E., S. E. Pusede, and R. C. Cohen (2013), An Observational Perspective on the Atmospheric Impacts of Alkyl and Multifunctional Nitrates on Ozone and Secondary Organic Aerosol, Chemical Reviews, 113(8), 5848-5870, doi:10.1021/cr300520x.
Pietrogrande, M., D. Bacco, and S. Chiereghin (2013), GC/MS analysis of water-soluble organics in atmospheric aerosol: optimization of a solvent extraction procedure for simultaneous analysis of carboxylic acids and sugars, Anal Bioanal Chem, 405(2-3), 1095-1104, doi:10.1007/s00216-012-6592-4.
Pietrogrande, M. C., D. Bacco, M. Visentin, S. Ferrari, and V. Poluzzi (2014), Polar organic marker compounds in atmospheric aerosol in the Po Valley during the Supersito campaigns — Part 1: Low molecular weight carboxylic acids in cold seasons, Atmospheric Environment, 86, 164-175, doi:http://dx.doi.org/10.1016/j.atmosenv.2013.12.022.
Plewka, A., T. Gnauk, E. Bruggemann, and H. Herrmann (2006), Biogenic contributions to the chemical composition of airborne particles in a coniferous forest in Germany, Atmospheric Environment, 40, S103-S115, doi:10.1016/j.atmosenv.2005.09.090.
Pohlker, C., et al. (2012), Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol in the Amazon, Science, 337(6098), 1075-1078, doi:10.1126/science.1223264.
Pratt, K. A., and K. A. Prather (2012a), Mass spectrometry of atmospheric aerosols—Recent developments and applications. Part I: Off-line mass spectrometry techniques, Mass Spectrometry Reviews, 31(1), 1-16, doi:10.1002/mas.20322.
Pratt, K. A., and K. A. Prather (2012b), Mass spectrometry of atmospheric aerosols—Recent developments and applications. Part II: On-line mass spectrometry techniques, Mass Spectrometry Reviews, 31(1), 17-48, doi:10.1002/mas.20330.
Pye, H. O. T., et al. (2015), Modeling the Current and Future Roles of Particulate Organic Nitrates in the Southeastern United States, Environmental Science & Technology, 49(24), 14195-14203, doi:10.1021/acs.est.5b03738.
Rindelaub, J. D., K. M. McAvey, and P. B. Shepson (2015), The photochemical production of organic nitrates from α-pinene and loss via acid-dependent particle phase hydrolysis, Atmospheric Environment, 100(0), 193-201, doi:http://dx.doi.org/10.1016/j.atmosenv.2014.11.010.
Rissler, J., E. Swietlicki, J. Zhou, G. Roberts, M. O. Andreae, L. V. Gatti, and P. Artaxo (2004), Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-to-dry season transition - comparison of modeled and measured CCN concentrations, Atmospheric Chemistry and Physics, 4, 2119-2143.
Rizzo, L. V., P. Artaxo, T. Karl, A. B. Guenther, and J. Greenberg (2010), Aerosol properties, in-canopy gradients, turbulent fluxes and VOC concentrations at a pristine forest site in Amazonia, Atmospheric Environment, 44(4), 503-511, doi:http://dx.doi.org/10.1016/j.atmosenv.2009.11.002.
Rollins, A. W., et al. (2012), Evidence for NOx Control over Nighttime SOA Formation, Science, 337(6099), 1210-1212, doi:10.1126/science.1221520.
Ritter, S. K. (2015), GLOBAL CO2 BREACHES 400 PPM, Chemical & Engineering News, 93(20), 28-28
Rollins, A. W., et al. (2009), Isoprene oxidation by nitrate radical: alkyl nitrate and secondary organic aerosol yields, Atmospheric Chemistry and Physics, 9(18), 6685-6703.
Rollins, A. W., et al. (2013), Gas/particle partitioning of total alkyl nitrates observed with TD-LIF in Bakersfield, Journal of Geophysical Research-Atmospheres, 118(12), 6651-6662, doi:10.1002/jgrd.50522.
Rosen, R. S., E. C. Wood, P. J. Wooldridge, J. A. Thornton, D. A. Day, W. Kuster, E. J. Williams, B. T. Jobson, and R. C. Cohen (2004), Observations of total alkyl nitrates during Texas Air Quality Study 2000: Implications for O-3 and alkyl nitrate photochemistry, Journal of Geophysical Research-Atmospheres, 109(D7), 15, doi:10.1029/2003jd004227.
Salo, K., et al. (2011), Volatility of secondary organic aerosol during OH radical induced ageing, Atmospheric Chemistry and Physics, 11(21), 11055-11067, doi:10.5194/acp-11-11055-2011.
Salvador, C. M., and C. C. K. Chou (2014), Analysis of semi-volatile materials (SVM) in fine particulate matter, Atmospheric Environment, 95, 288-295, doi:http://dx.doi.org/10.1016/j.atmosenv.2014.06.046.
Salvador, C. M., T. T. Ho, C. C. K. Chou, M. J. Chen, W. R. Huang, and S. H. Huang (2016), Characterization of the organic matter in submicron urban aerosols using a Thermo-Desorption Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (TD-PTR-TOF-MS), Atmospheric Environment, 140, 565-575, doi:http://dx.doi.org/10.1016/j.atmosenv.2016.06.029.
Schaller, N., et al. (2016), Human influence on climate in the 2014 southern England winter floods and their impacts, Nature Clim. Change, advance online publication, doi:10.1038/nclimate2927
http://www.nature.com/nclimate/journal/vaop/ncurrent/abs/nclimate2927.html#supplementary-information.
Schauer, J. J., W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, and B. R. T. Simoneit (1996), Source apportionment of airborne particulate matter using organic compounds as tracers, Atmospheric Environment, 30(22), 3837-3855, doi:10.1016/1352-2310(96)00085-4.
Seinfeld, J., and S. Pandis (2006), Atmospheric Chemistry and Physics: From Air pollution to Climate Change, Second Edition ed., John Wiley & Sons, New Jersey, USA.
Sellegri, K., M. Hanke, B. Umann, F. Arnold, and M. Kulmala (2005), Measurements of organic gases during aerosol formation events in the boreal forest atmosphere during QUEST, Atmos. Chem. Phys., 5(2), 373-384, doi:10.5194/acp-5-373-2005.
Shakya, K. M., P. Louchouarn, and R. J. Griffin (2011), Lignin-Derived Phenols in Houston Aerosols: Implications for Natural Background Sources, Environmental Science & Technology, 45(19), 8268-8275, doi:10.1021/es201668y.
Shrivastava, M. K., R. Subramanian, W. F. Rogge, and A. L. Robinson (2007), Sources of organic aerosol: Positive matrix factorization of molecular marker data and comparison of results from different source apportionment models, Atmospheric Environment, 41(40), 9353-9369, doi:http://dx.doi.org/10.1016/j.atmosenv.2007.09.016.
Simoneit, B. R. T., W. F. Rogge, M. A. Mazurek, L. J. Standley, L. M. Hildemann, and G. R. Cass (1993), LIGNIN PYROLYSIS PRODUCTS, LIGNANS, AND RESIN ACIDS AS SPECIFIC TRACERS OF PLANT CLASSES IN EMISSIONS FROM BIOMASS COMBUSTION, Environmental Science & Technology, 27(12), 2533-2541, doi:10.1021/es00048a034.
Song, Y., X. Tang, S. Xie, Y. Zhang, Y. Wei, M. Zhang, L. Zeng, and S. Lu (2007), Source apportionment of PM2.5 in Beijing in 2004, Journal of Hazardous Materials, 146(1–2), 124-130, doi:http://dx.doi.org/10.1016/j.jhazmat.2006.11.058
Souza, S. R., P. C. Vasconcellos, and L. R. F. Carvalho (1999), Low molecular weight carboxylic acids in an urban atmosphere: Winter measurements in Sao Paulo City, Brazil, Atmospheric Environment, 33(16), 2563-2574, doi:http://dx.doi.org/10.1016/S1352-2310(98)00383-5.
Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan (2015), NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System, Bulletin of the American Meteorological Society, 96(12), 2059-2077, doi:10.1175/BAMS-D-14-00110.1.
Stockwell, C. E., P. R. Veres, J. Williams, and R. J. Yokelson (2015), Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry, Atmospheric Chemistry and Physics, 15(2), 845-865, doi:10.5194/acp-15-845-2015.
Sulzer, P., A. Edtbauer, E. Hartungen, S. Jurschik, A. Jordan, G. Hanel, S. Feil, S. Jaksch, L. Mark, and T. D. Mark (2012), From conventional proton-transfer-reaction mass spectrometry (PTR-MS) to universal trace gas analysis, International Journal of Mass Spectrometry, 321–322, 66-70, doi:http://dx.doi.org/10.1016/j.ijms.2012.05.003
Suni, T., et al. (2008), Formation and characteristics of ions and charged aerosol particles in a native Australian Eucalypt forest, Atmospheric Chemistry and Physics, 8(1), 129-139.
Surratt, J. D., et al. (2008), Organosulfate Formation in Biogenic Secondary Organic Aerosol, The Journal of Physical Chemistry A, 112(36), 8345-8378, doi:10.1021/jp802310p.
Surratt, J. D., et al. (2006), Chemical Composition of Secondary Organic Aerosol Formed from the Photooxidation of Isoprene, The Journal of Physical Chemistry A, 110(31), 9665-9690, doi:10.1021/jp061734m.
Tanner, R. L., W. J. Parkhurst, M. L. Valente, and W. David Phillips (2004), Regional composition of PM2.5 aerosols measured at urban, rural and “background” sites in the Tennessee valley, Atmospheric Environment, 38(20), 3143-3153, doi:http://dx.doi.org/10.1016/j.atmosenv.2004.03.023.
Thalman, R., et al. (2015), Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions, Atmos. Meas. Tech., 8(4), 1835-1862, doi:10.5194/amt-8-1835-2015.
Thornberry, T., D. M. Murphy, D. S. Thomson, J. de Gouw, C. Warneke, T. S. Bates, P. K. Quinn, and D. Coffman (2009), Measurement of Aerosol Organic Compounds Using a Novel Collection/Thermal-Desorption PTR-ITMS Instrument, Aerosol Science and Technology, 43(5), 486-501, doi:10.1080/02786820902763132.
Tillmann, R., M. Hallquist, A. M. Jonsson, A. Kiendler-Scharr, H. Saathoff, Y. Iinuma, and T. F. Mentel (2010), Influence of relative humidity and temperature on the production of pinonaldehyde and OH radicals from the ozonolysis of alpha-pinene, Atmospheric Chemistry and Physics, 10(15), 7057-7072, doi:10.5194/acp-10-7057-2010.
Timkovsky, J., U. Dusek, J. S. Henzing, T. L. Kuipers, T. Rockmann, and R. Holzinger (2015), Offline thermal-desorption proton-transfer-reaction mass spectrometry to study composition of organic aerosol, Journal of Aerosol Science, 79, 1-14, doi:10.1016/j.jaerosci.2014.08.010.
Timkovsky, J., P. Gankema, R. Pierik, and R. Holzinger (2014), A plant chamber system with downstream reaction chamber to study the effects of pollution on biogenic emissions, Environmental Science: Processes & Impacts, 16(10), 2301-2312, doi:10.1039/C4EM00214H.
Turnbull, J. C., P. P. Tans, S. J. Lehman, D. Baker, T. J. Conway, Y. S. Chung, J. Gregg, J. B. Miller, J. R. Southon, and L.-X. Zhou (2011), Atmospheric observations of carbon monoxide and fossil fuel CO2 emissions from East Asia, Journal of Geophysical Research: Atmospheres, 116(D24), n/a-n/a, doi:10.1029/2011JD016691.
Turpin, B. J., and H.-J. Lim (2001), Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass, Aerosol Science and Technology, 35(1), 602-610, doi:10.1080/02786820119445.
Urban, R. C., M. Lima-Souza, L. Caetano-Silva, M. E. C. Queiroz, R. F. P. Nogueira, A. G. Allen, A. A. Cardoso, G. Held, and M. L. A. M. Campos (2012), Use of levoglucosan, potassium, and water-soluble organic carbon to characterize the origins of biomass-burning aerosols, Atmospheric Environment, 61, 562-569, doi:http://dx.doi.org/10.1016/j.atmosenv.2012.07.082.
Van Dingenen, R., et al. (2004), A European aerosol phenomenology—1: physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmospheric Environment, 38(16), 2561-2577, doi:http://dx.doi.org/10.1016/j.atmosenv.2004.01.040.
Vestenius, M., H. Hellen, J. Levula, P. Kuronen, K. J. Helminen, T. Nieminen, M. Kulmala, and H. Hakola (2014), Acidic reaction products of monoterpenes and sesquiterpenes in atmospheric fine particles in a boreal forest, Atmospheric Chemistry and Physics, 14(15), 7883-7893, doi:10.5194/acp-14-7883-2014.
Vogel, A. L., M. Aijala, M. Bruggemann, M. Ehn, H. Junninen, T. Petaja, D. R. Worsnop, M. Kulmala, J. Williams, and T. Hoffmann (2013), Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol – a laboratory and field study, Atmos. Meas. Tech., 6(2), 431-443, doi:10.5194/amt-6-431-2013.
Wagener, S., M. Langner, U. Hansen, H. J. Moriske, and W. R. Endlicher (2012), Spatial and seasonal variations of biogenic tracer compounds in ambient PM10 and PM1 samples in Berlin, Germany, Atmospheric Environment, 47, 33-42, doi:10.1016/j.atmosenv.2011.11.044.
Wang, Y., G. Zhuang, S. Chen, Z. An, and A. Zheng (2007), Characteristics and sources of formic, acetic and oxalic acids in PM2.5 and PM10 aerosols in Beijing, China, Atmospheric Research, 84(2), 169-181, doi:http://dx.doi.org/10.1016/j.atmosres.2006.07.001.
Williams, B. J., A. H. Goldstein, N. M. Kreisberg, and S. V. Hering (2006), An In-Situ Instrument for Speciated Organic Composition of Atmospheric Aerosols: Thermal Desorption Aerosol GC/MS-FID (TAG), Aerosol Science and Technology, 40(8), 627-638, doi:10.1080/02786820600754631.
Williams, B. J., Y. Zhang, X. Zuo, R. E. Martinez, M. J. Walker, N. M. Kreisberg, A. H. Goldstein, K. S. Docherty, and J. L. Jimenez (2016), Organic and inorganic decomposition products from the thermal desorption of atmospheric particles, Atmos. Meas. Tech., 9(4), 1569-1586, doi:10.5194/amt-9-1569-2016.
Winiger, P., A. Andersson, K. E. Yttri, P. Tunved, and O. Gustafsson (2015), Isotope-Based Source Apportionment of EC Aerosol Particles during Winter High-Pollution Events at the Zeppelin Observatory, Svalbard, Environmental Science & Technology, 49(19), 11959-11966, doi:10.1021/acs.est.5b02644.
Wisthaler, A., N. R. Jensen, R. Winterhalter, W. Lindinger, and J. Hjorth (2001), Measurements of acetone and other gas phase product yields from the OH-initiated oxidation of terpenes by proton-transfer-reaction mass spectrometry (PTR-MS), Atmospheric Environment, 35(35), 6181-6191, doi:10.1016/s1352-2310(01)00385-5.
Yasmeen, F., R. Vermeylen, N. Maurin, E. Perraudin, J. F. Doussin, and M. Claeys (2012), Characterisation of tracers for aging of alpha-pinene secondary organic aerosol using liquid chromatography/negative ion electrospray ionisation mass spectrometry, Environ. Chem., 9(3), 236-246, doi:10.1071/en11148.
Yee, L. D., et al. (2013), Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols, Atmos. Chem. Phys., 13(16), 8019-8043, doi:10.5194/acp-13-8019-2013.
Yu, J. Z., R. J. Griffin, D. R. Cocker, R. C. Flagan, J. H. Seinfeld, and P. Blanchard (1999), Observation of gaseous and particulate products of monoterpene oxidation in forest atmospheres, Geophysical Research Letters, 26(8), 1145-1148, doi:10.1029/1999gl900169.
Yu, S. (2000), Role of organic acids (formic, acetic, pyruvic and oxalic) in the formation of cloud condensation nuclei (CCN): a review, Atmospheric Research, 53(4), 185-217, doi:http://dx.doi.org/10.1016/S0169-8095(00)00037-5.
Zangrando, R., E. Barbaro, P. Zennaro, S. Rossi, N. M. Kehrwald, J. Gabrieli, C. Barbante, and A. Gambaro (2013), Molecular Markers of Biomass Burning in Arctic Aerosols, Environmental Science & Technology, 47(15), 8565-8574, doi:10.1021/es400125r.
Zhang, K. M., and A. S. Wexler (2002), A hypothesis for growth of fresh atmospheric nuclei, Journal of Geophysical Research: Atmospheres, 107(D21), 4577, doi:10.1029/2002JD002180.
Zhang, Q., et al. (2007), Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophysical Research Letters, 34(13), 6, doi:10.1029/2007gl029979.
Zhang, R. Y., L. Wang, A. F. Khalizov, J. Zhao, J. Zheng, R. L. McGraw, and L. T. Molina (2009), Formation of nanoparticles of blue haze enhanced by anthropogenic pollution, Proceedings of the National Academy of Sciences of the United States of America, 106(42), 17650-17654, doi:10.1073/pnas.0910125106.
Zhang, S. H., G. P. Yang, H. H. Zhang, and J. Yang (2014), Spatial variation of biogenic sulfur in the south Yellow Sea and the East China Sea during summer and its contribution to atmospheric sulfate aerosol, Science of the Total Environment, 488, 157-167, doi:10.1016/j.scitotenv2014.04.074.
Zhao, Y., et al. (2013), Insights into Secondary Organic Aerosol Formation Mechanisms from Measured Gas/Particle Partitioning of Specific Organic Tracer Compounds, Environmental Science & Technology, 47(8), 3781-3787, doi:10.1021/es304587x.
Zheng, M., L. Ke, E. S. Edgerton, J. J. Schauer, M. Dong, and A. G. Russell (2006), Spatial distribution of carbonaceous aerosol in the southeastern United States using molecular markers and carbon isotope data, Journal of Geophysical Research: Atmospheres, 111(D10), n/a-n/a, doi:10.1029/2005JD006777.
Zhou, J. C., E. Swietlicki, H. C. Hansson, and P. Artaxo (2002), Submicrometer aerosol particle size distribution and hygroscopic growth measured in the Amazon rain forest during the wet season, Journal of Geophysical Research-Atmospheres, 107(D20), 10, doi:10.1029/2000jd000203.
Ziemann, P. J., and R. Atkinson (2012), Kinetics, products, and mechanisms of secondary organic aerosol formation, Chemical Society Reviews, 41(19), 6582-6605, doi:10.1039/C2CS35122F.
|