參考文獻 |
參考文獻
1. H. Deng, H. Haug, Y. Yamamoto, Exciton-polariton Bose-Einstein condensation. Reviews of Modern Physics 82(2010).
2. M. N. C. Weisbuch, A. Ishikawa, Y. Arakawa, Phys. Rev. Lett. 69(1992).
3. C. Schneider et al., An electrically pumped polariton laser. Nature 497(2013).
4. S. Kena-Cohen, S. R. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photonics 4 (2010).
5. D. M. Coles et al., Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity. Nat Mater 13 (2014).
6. N. Christogiannis et al., Characterizing the Electroluminescence Emission from a Strongly Coupled Organic Semiconductor Microcavity LED. Advanced Optical Materials 1(2013).
7. G. M. Akselrod, E. R. Young, M. S. Bradley, V. Bulovic, Lasing through a strongly-coupled mode by intra-cavity pumping. Opt Express 21(2013).
8. J. R. Tischler, M. S. Bradley, V. Bulovic, J. H. Song, A. Nurmikko, Strong coupling in a microcavity LED. Phys Rev Lett 95(2005).
9. 李正中, 薄膜光學與鍍膜技術. 第七版,藝軒圖書出版社,新北市(2012).
10. D. M. Coles, P. Michetti, C. Clark, A. M. Adawi, D. G. Lidzey, Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity. Physical Review B 84(2011).
11. D. M. Coles et al., Vibrationally Assisted Polariton-Relaxation Processes in Strongly Coupled Organic-Semiconductor Microcavities. Advanced Functional Materials 21(2011).
12. R. J. Holmes, S. R. Forrest, Strong exciton–photon coupling in organic materials. Organic Electronics 8(2007).
13. A. I. Tartakovskii et al., Raman scattering in strongly coupled organic semiconductor microcavities. Physical Review B 63(2001).
14. P. A. Hobson et al., Strong exciton–photon coupling in a low-Q all-metal mirror microcavity. Applied Physics Letters 81(2002).
15. D. G. Lidzey et al., Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation. Physical Review B 65(2002).
16. V. M. Agranovich, M. Litinskaia, D. G. Lidzey, Cavity polaritons in microcavities containing disordered organic semiconductors. Physical Review B 67(2003).
17. L. G. Connolly et al., Strong coupling in high-finesse organic semiconductor microcavities. Applied Physics Letters 83(2003).
18. S. Ceccarelli, J. Wenus, M. S. Skolnick, D. G. Lidzey, Temperature dependent polariton emission from strongly coupled organic semiconductor microcavities. Superlattices and Microstructures 41(2007).
19. J. Chovan, I. E. Perakis, S. Ceccarelli, D. G. Lidzey, Controlling the interactions between polaritons and molecular vibrations in strongly coupled organic semiconductor microcavities. Physical Review B 78 (2008).
20. D. M. Coles, R. T. Grant, D. G. Lidzey, C. Clark, P. G. Lagoudakis, Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities. Physical Review B 88(2013).
21. S. K. Rajendran et al., Direct evidence of Rabi oscillations and antiresonance in a strongly coupled organic microcavity. Physical Review B 91(2015).
22. M. Slootsky, Y. Zhang, S. R. Forrest, Temperature dependence of polariton lasing in a crystalline anthracene microcavity. Physical Review B 86(2012).
23. M. Razeghi et al., Exciton-polariton Bose-Einstein condensation with a polymer at room temperature. 9370(2015).
24. G. M. Akselrod et al., Reduced lasing threshold from organic dye microcavities. Physical Review B 90(2014).
25. J.-H. Song, Y. He, A. V. Nurmikko, J. Tischler, V. Bulovic, Exciton-polariton dynamics in a transparent organic semiconductor microcavity. Physical Review B 69(2004).
26. Bertie, J.E. and S.L. Zhang, Infrared intensities of liquids. IX. The Kramers-Kronig transform, and its approximation by the finite Hilbert transform viafast Fourier transforms. Canadian Journal of Chemistry, 1992. 70(2)
27. Lucarini, V., Kramers-Kronig relations in optical materials research. 2005:Springer.
28. Nitsche, R. and T. Fritz, Determination of model-free Kramers-Kronigconsistent optical constants of thin absorbing films from just one spectralmeasurement: Application to organic semiconductors. Physical Review B,2004. 70(19).
29. 林成之, " 有機染料分子薄膜之光電特性研究" ,碩士,光電科學與工程學系,國立中央大學,桃園市 (2014).
30. 呂揚翰, "有機強耦合共振腔元件設計與發光量測系統架設之研究", 碩士,光電科學與工程學系,國立中央大學,桃園市 (2015).
31. 何彥璋, "強耦合有機微共振腔之設計與研究" ,碩士,光電科學與工程學系,國立中央大學,桃園市 (2015).
32. 戴振全, "即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究", 碩士,光電科學與工程學系,國立中央大學,桃園市 (2016).
33. 吳峻志, "高效率紅光及高效率單層全波段白光有機電激發光元件之研究",碩士,光電工程研究所, 國立中山大學,高雄市(2008)
34. P. Michetti, G. C. La Rocca, Exciton-phonon scattering and photoexcitation dynamics inJ-aggregate microcavities. Physical Review B 79(2009).
35. P. M. G. C. L. Rocca, Simulation of J-aggregate microcavity photoluminescence. PhysRevB 77 (2008).
36. P. Michetti, G. C. La Rocca, Polariton states in disordered organic microcavities. Physical Review B 71(2005).
37. P. Michetti, G. C. La Rocca, Polariton-polariton scattering in organic microcavities at high excitation densities. Physical Review B 82(2010).
|