博碩士論文 103323013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.138.125.86
姓名 吳朝旺(Chao-Wang Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 顆粒體在具阻礙物滑道中流動行為研究:DEM的實驗驗證及傳輸性質與內部性質探討
相關論文
★ 顆粒形狀對顆粒體在旋轉鼓內流動行為之影響★ 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證
★ 水中顆粒體崩塌分析與電腦模擬比對★ 以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為
★ 可破裂顆粒在單向度壓力及膨脹收縮 之力學行為★ 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討
★ 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為★ 以物理實驗探討顆粒形狀 對顆粒體在振動床中傳輸性質的影響
★ 以物理實驗探討顆粒形狀 對顆粒體在旋轉鼓中傳輸性質的影響★ 一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為
★ 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為★ 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應
★ 非球形顆粒體在剪力槽中的流動行為追蹤與分析★ 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響
★ 以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討★ 顆粒外形對顆粒體在滑坡道流動行為之影響及內部性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用驗證合理的離散元素法(DEM, discrete element method)模型,探討球型顆粒體在具阻礙物滑道中的流動行為。本研究旨在探討滑道中阻礙物對於重力驅動顆粒體的傳輸性質及內部性質之影響,藉由計算滑道系統中顆粒體流場深度,體積佔有率,速度場,旋轉角速度,粒子溫度,配位數,應力,接觸力方向分佈及組構張量等性質,並觀察顆粒體受邊壁摩擦效應影響後的性質變化。本研究結果顯示,顆粒體的流動行為受阻礙物影響,在阻礙物前產生堆積,通過阻礙物顆粒體產生飛濺,而後受重力影響掉落至滑道。因顆粒體與邊壁產生摩擦,使得邊壁處的流速較中央為小,而垂直滑道方向角速度及滑道平面方向剪應力則較中央為大,且由邊壁摩擦所產生的剪力使顆粒體產生體積膨脹,導致兩側體積佔有率,配位數,正向應力及滑道邊壁方向剪應力較中央為小,且兩側顆粒體滾動方向角速度較中央為大。粒子溫度的結果顯示,在飛濺的顆粒體掉落至滑道處有較高的粒子溫度,邊壁的顆粒體受摩擦所產生的剪力影響,使得顆粒體較為擾動,因此在滑道邊界處及自由表面有較高的粒子溫度。應力的結果顯示,由於滑道中阻礙物造成顆粒體的堆積,導致正向應力及剪應力上升。並觀察接觸力方向分佈及組構張量的變化,受滑道中阻礙物影響,使得流動方向的接觸分佈增加,且在飛濺時顆粒體會向兩側邊壁散開,而後顆粒體受重力影響掉落至滑道,使得流場深度方向的接觸增加。
摘要(英) The aim of the study is to investigate the flow behavior of spherical particles in an inclined chute with a cylindrical obstacle by using PIV measurement technique and discrete element modelling. The proposed DEM model is first validated against the corresponding experiment. After reasonable justification, the DEM results are further employed to explore the transport and internal properties of granular flow driven by gravity in the inclined chute. The physical properties, including flow depth, solid fraction, velocity profile, angular velocity, granular temperature, coordination number, stress state, contact force orientation and fabric tensor, are evaluated. In addition, the effect of the obstacle and friction on physical properties is also examined. The particles adjacent to the side walls exhibit smaller translational velocity in the streamwise direction, but larger angular velocity and in-plane shear stresses due to boundary friction effect. This boundary friction also leads to granular dilatancy, which makes solid fraction, coordination number, normal stress and out-of-plane shear stresses decrease. The granular flow shows higher granular temperature at the place where particles fly in the air and fall onto the inclined chute again. In addition, the granular temperature near the boundary (sidewalls and bottom wall) and at the free surface is larger than that in the central part. Due to the obstacle, the granular jamming forms and results in an increase of coordination number, normal and shear stresses. The contact force orientation become more streamwise as a result of granular deposit, but scatters when the particles fly in the air. After the particles fall onto the inclined chute again, the contact force orientation becomes steeper.
關鍵字(中) ★ 滑道顆粒流
★ 阻礙物
★ 離散元素法
★ 傳輸性質
★ 內部性質
★ 邊界摩擦效應
關鍵字(英)
論文目次 摘要 i
Abstract ii
目錄 iii
表格目錄 v
附圖目錄 v
第一章 緒論 1
1.1 顆粒體 1
1.2 顆粒流特性 2
1.3 顆粒崩塌流 2
1.4 顆粒流場中設置阻礙物的相關研究 5
1.5 研究動機 8
第二章 研究方法 9
2.1 離散元素法及模型設計 9
2.1.1 離散元素法之運算原理 9
(1) 三維剛體運動方程式 9
(2) 接觸力模型 11
(3) 背景阻尼 13
(4) 時間步 13
2.1.2 模型設計 14
2.2 模擬操作及參數決定之方法 15
2.2.1 模擬設置 15
2.2.2 顆粒材料性質量測方法 15
(1) 掉落實驗 15
(2) 安息角實驗 16
2.3 傳輸性質及內部性質 16
2.3.1傳輸性質 16
(1) 流場深度 16
(2) 顆粒體體積佔有率 17
(3) 流場速度 17
(4) 旋轉角速度 17
(5) 擾動速度 18
(6) 粒子溫度 18
2.3.2內部性質 19
(1) 配位數 19
(2) 應力 20
(3) 接觸力角度分佈及組構張量 22
第三章 結果與討論 23
3.1 DEM模型的實驗驗證:側邊速度剖面之比對 23
3.2 滑道顆粒體內部速度場 24
3.2.1 流場深度 24
3.2.2 體積佔有率 25
3.2.3 沿流場方向之平均速度分佈 26
3.2.4 內部顆粒體流速分佈 27
3.2.5 旋轉角速度 29
3.2.6 擾動速度 30
3.2.7 粒子溫度 31
3.3 滑道內顆粒體微觀性質 32
3.3.1 配位數 32
3.3.2 應力 33
3.3.4 摩擦啟動因子 35
3.3.5 接觸力 36
3.3.6 接觸力方向分佈 37
3.3.7 組構張量 38
第四章 結論 41
參考文獻 43
參考文獻 [1] P. Richard, ” Slow relaxation and compaction of granular systems,” Nature Materials 4, pp. 121-128,2005.
[2] H. M. Jaeger, and S. R. Nagel, ”Granular Solid, Liquids, and Gases,” Review of Modern Physics, Vol.68,NO. 4, pp. 1259-1271,1996.
[3] H. Gerald, “Pattern Formation in Granular Materials,” Springer Verlag, 1999
[4] C. S. Campbell, “Rapid Granular Flows,” Annual Review of Fluid Mechanics, Vol. 22, pp57-92, 1990
[5] H. M. Jaeger, and S. R. Nagel, “Physics of the Granular State,” Science, Vol. 255, pp. 1523-1531, 1992.
[6] N. Jain, J. M. Ottino, and R. M. Lueptow, “Effect of Interstitial Fluid on a Granular Flowing Layer,” Physical Review E, Vol. 508, pp. 23-44, 2004.
[7] C. S. Campbell, and C. E. Brennen, “Chute flows of granular material: some computer simulations,” Journal of Applied Mechanics, Vol. 52, pp. 172-178, 1985.
[8] J. S. Patton, C. E. Brennen, and R.H. Sabersky, “Shear flows of rapidly flowing granular materials,” Journal of Applied Mechanics, Vol. 54, pp. 801-805, 1987.
[9] D. Takagi, J. N. McElwaine, and H. E. Huppert, “Shallow granular flows,” Physical Review E, Vol. 83, 031306, 2011.
[10] T. Faug, I. Einav, P. Childs, and E. Wyburn “Diffuse and steep jumps in steady-state granular flows,” ACMSM23, pp. 769-774, 2014.
[11] M. Sadjadpour, and C. S. Campbell, “Granular chute flow regimes: mass flowrates, flowrate limits and clogging,” Advanced Powder Technol., Vol. 10, No. 2, pp. 175-185, 1999.
[12] C. Y. Lo, M. D. Bolton, and Y. P. Cheng, “Velocity fields of granular flows down a rough incline: a DEM investigation,” Granular Matter, Vol. 12, pp. 477-482, 2010.
[13] S. S. Shirsath, J. T. Padding, N. G. Deen, H. J. H. Clercx, and J. A. M. Kuipers, “Experimental study of monodisperse granular flow through an inclined rotating chute,” Powder Technology, Vol. 246, pp. 235-246, 2013.
[14] Y. Fan, and K. M. Hill, “Shear-induced segregation of particles by material density,” Physical Review E, Vol. 92, 022211, 2015.
[15] S. Wiederseiner, N. Andreini, G. Epely-Chauvin, G. Moser, M. Monnereau, J. M. N. T. Gray, and C. Ancey, “Experimental investigation into segregating granular flows down chutes,” Physics of Fluid, Vol. 23, 013301, 2011.
[16] K. M. Hakonardottir, A. J. Hogg, and J. Batey, “Flying avalanches,” Geophysical Research Letters, Vol. 30, 2191, 2003.
[17] McClung, D., and Schaerer, P. A., “The avalanche handbook,” The Mountaineers, Seattle, 1993.
[18] K. M. Hakonardottir, A. J. Hogg, T. Johannesson, M. Kern, and F. Tiefenbacher, “Large-scale avalanche braking mound and catching dam experiments with snow: a study of the airborne jet,” Surveys in Geophysics, Vol. 24, pp. 543-554, 2003.
[19] S. Hauksson, M. Pagliardi, M., Barbolini, M., and Johannesson, T., “Laboratory measure -ments of impct force of supercritical granular flow against mast-like obstacles,” Cold Regions Science and Technology, Vol. 49, pp. 54-63, 2007.
[20] Y. C. Tai, J. M. N. Gray, K. Hutter, K., and Noelle, S., “Flow of dense avalanches past obstructions,” Annual of Glaciology, Vol. 32, pp. 281-284, 2001.
[21] M. C. Chiou, Y. Wang, and K. Hutter, “Influence of obstacles on rapid granular flows,” Acta Mechanica, Vol. 175, pp. 105-122, 2005.
[22] T. Faug, M. Naaim, D. Bertrand, P. Lachamp, and F. Naaim-Bouvet, “Varying dam height to shorten the run-out of dense avalanche flows: developing a scale law form laboratory experiment,” Surveys in Geophysics, Vol. 24, pp. 555-568, 2003.
[23] H. Teufelsbauer, Y. Wang, and M. C. Chiou, “Flow-obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment,” Granular Matter, Vol. 11, pp. 209-220, 2009.
[24] T. Faug, P. Lachamp, and M. Naaim, “Experimental investigation on steady granular flows interacting with an obstacle down an inclined channel: study of the dead zone upstream from the obstacle. Application to interaction between dense snow avalanches and defence structures,” Natural Hazards and Earth System Sciences, Vol. 2, pp. 187-191, 2002.
[25] A. Murray, and F. Alonso-Marroquin, “Increasing granular flow rate with obstructions,” Papers in Physics, Vol. 8, Art. 080003, 2016.
[26] P. A. Cundall, and O. D. L. Strack, “Discrete numerical model for granular assemblies,” Geotechnique, Vol. 29, pp. 47-65, 1979..
[27] Y. C. Chung, H. H. Liao, and S. S. Hsiau, “Convection behavior of non-spherical particles in a vibrating bed: Discrete element modeling and experiment validation,” Powder Technology, Vol. 237, pp. 53-66, 2013.
[28] Y. Tsuji, T. Tanaka, and T. Ishiba, “Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe,” Powder Technology, Vol. 73, pp. 239-250, 1992
[29] Z. Hossain, T. Mukerji , and I. L. Fabricius, “Vp-Vs relationship and amplitude variation with offset modelling of glauconitic greensand,” Geophysical Prospecting, Vol. 60, pp. 117-137, 2012.
[30] C. Thornton, and C. W. Randall, “Applications of theoretical contact mechanics to solid particle system simulation .(Eds, Satake, M. and Jenkins, J. T.),” Elsevier, Amsterdam, pp. 133-142, 1988.
[31] C. O’Sullivan, and J. D. Bray, “Selecting a suitable time step for discrete element simulation that use the central difference time integration scheme,” Engineering Computations, Vol. 21, pp. 278-303, 2004.
[32] Y. C. Chung, and J. Y. Ooi, “Benchmark test for verifying discrete element modelling codes at particle impact level,” Granular Matter, Vol. 13, pp. 643-656, 2011.
[33] B. H. G. Brady, and E. T. Brown, “Rock mechanics,” 2rd edn, chapman & Hall, pp. 518-523, 1993.
[34] C. S. Chang, and Y. Liu, “Stress and fabric in granular material,” Theoretical and Applied Mechanics Letters, Vol. 3, 021002, 2013
[35] 邱上育,「半圓柱阻礙物對重力驅動顆粒流場之影響」,中央大學,碩士論文,民國100年
[36] R. Artoni, A. C. Santomaso, M. Go’, and P. Canu, “Scaling laws for the slip velocity in dense granular flows,” Physical Review Letters, Vol. 108, 238002, 2012.
[37] D. A. Augenstein, and R. Hogg, “An experimental study of the flow of dry powders on inclined surfaces,” Powder Technology, Vol. 19, pp. 205-215 , 1978.
[38] O. Reynolds, “Experiments showing dilutency, A property of granular materials possibly connected with gravitation,” Proceedings of the Royal. Institution of Great Britain, Vol. 51, pp. 218-227, 1887
[39] L. E. Silbert, D. Ertas, G. S. Grest, T. C. Halsey, D. Levine, and S. J. Plimpton, “Granular flow down an inclined plane: Bagnold scaling and rheology,” Physical Review E, Vol. 64, 051302, 2001.
[40] C. Y. Kuo, L. T. Sheng, S. Y. Chiu, Y. Z. Yang, Y. C. Tai, and S. S. Hsiau, “Measurement and discrete element simulation of a fixed-obstacle disturbed rapid granular chute flow,” Physical of Fluids, Vol. 27, 013305, 2015.
[41] H. T. Chou, C. F. Lee, Y. C. Chung, and S. S. Hsiau, “Discrete element modelling and experimental validation for the falling process of dry granular steps,” Powder Technology, Vol. 231, pp. 122-134 , 2012.
[42] H. Ahn, C. E. Brennen, and R. H. Sabersky, “Measurements of velocity, velocity fluctuation, density, and stresses in chute flow of granular materials,” Journal of Applied Mechanics, Vol. 58, pp. 792-803, 1991.
[43] C. C. Liao, S. S. Hsiau, and W. J. Yu, “The influence of driving conditions on flow behavior in sheared granular flows,” International Journal of Multiphase Flow 46 pp.22-31, 2012
[44] M. Nitka, J. Tejchman, and J. Kozicki, “Discrete modelling of micro-structural phenomena in granular shear zone,” Springer International Publish Switzerland, 2015.
[45] V. Jasti, and C. F. Higgs, “Experimental study of granular flows in a rough annular shear cell,” Phys. Rev., Vol.78, 041306, 2008.
指導教授 鍾雲吉 審核日期 2017-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明