參考文獻 |
[1] P. Richard, ” Slow relaxation and compaction of granular systems,” Nature Materials 4, pp. 121-128,2005.
[2] H. M. Jaeger, and S. R. Nagel, ”Granular Solid, Liquids, and Gases,” Review of Modern Physics, Vol.68,NO. 4, pp. 1259-1271,1996.
[3] H. Gerald, “Pattern Formation in Granular Materials,” Springer Verlag, 1999
[4] C. S. Campbell, “Rapid Granular Flows,” Annual Review of Fluid Mechanics, Vol. 22, pp57-92, 1990
[5] H. M. Jaeger, and S. R. Nagel, “Physics of the Granular State,” Science, Vol. 255, pp. 1523-1531, 1992.
[6] N. Jain, J. M. Ottino, and R. M. Lueptow, “Effect of Interstitial Fluid on a Granular Flowing Layer,” Physical Review E, Vol. 508, pp. 23-44, 2004.
[7] C. S. Campbell, and C. E. Brennen, “Chute flows of granular material: some computer simulations,” Journal of Applied Mechanics, Vol. 52, pp. 172-178, 1985.
[8] J. S. Patton, C. E. Brennen, and R.H. Sabersky, “Shear flows of rapidly flowing granular materials,” Journal of Applied Mechanics, Vol. 54, pp. 801-805, 1987.
[9] D. Takagi, J. N. McElwaine, and H. E. Huppert, “Shallow granular flows,” Physical Review E, Vol. 83, 031306, 2011.
[10] T. Faug, I. Einav, P. Childs, and E. Wyburn “Diffuse and steep jumps in steady-state granular flows,” ACMSM23, pp. 769-774, 2014.
[11] M. Sadjadpour, and C. S. Campbell, “Granular chute flow regimes: mass flowrates, flowrate limits and clogging,” Advanced Powder Technol., Vol. 10, No. 2, pp. 175-185, 1999.
[12] C. Y. Lo, M. D. Bolton, and Y. P. Cheng, “Velocity fields of granular flows down a rough incline: a DEM investigation,” Granular Matter, Vol. 12, pp. 477-482, 2010.
[13] S. S. Shirsath, J. T. Padding, N. G. Deen, H. J. H. Clercx, and J. A. M. Kuipers, “Experimental study of monodisperse granular flow through an inclined rotating chute,” Powder Technology, Vol. 246, pp. 235-246, 2013.
[14] Y. Fan, and K. M. Hill, “Shear-induced segregation of particles by material density,” Physical Review E, Vol. 92, 022211, 2015.
[15] S. Wiederseiner, N. Andreini, G. Epely-Chauvin, G. Moser, M. Monnereau, J. M. N. T. Gray, and C. Ancey, “Experimental investigation into segregating granular flows down chutes,” Physics of Fluid, Vol. 23, 013301, 2011.
[16] K. M. Hakonardottir, A. J. Hogg, and J. Batey, “Flying avalanches,” Geophysical Research Letters, Vol. 30, 2191, 2003.
[17] McClung, D., and Schaerer, P. A., “The avalanche handbook,” The Mountaineers, Seattle, 1993.
[18] K. M. Hakonardottir, A. J. Hogg, T. Johannesson, M. Kern, and F. Tiefenbacher, “Large-scale avalanche braking mound and catching dam experiments with snow: a study of the airborne jet,” Surveys in Geophysics, Vol. 24, pp. 543-554, 2003.
[19] S. Hauksson, M. Pagliardi, M., Barbolini, M., and Johannesson, T., “Laboratory measure -ments of impct force of supercritical granular flow against mast-like obstacles,” Cold Regions Science and Technology, Vol. 49, pp. 54-63, 2007.
[20] Y. C. Tai, J. M. N. Gray, K. Hutter, K., and Noelle, S., “Flow of dense avalanches past obstructions,” Annual of Glaciology, Vol. 32, pp. 281-284, 2001.
[21] M. C. Chiou, Y. Wang, and K. Hutter, “Influence of obstacles on rapid granular flows,” Acta Mechanica, Vol. 175, pp. 105-122, 2005.
[22] T. Faug, M. Naaim, D. Bertrand, P. Lachamp, and F. Naaim-Bouvet, “Varying dam height to shorten the run-out of dense avalanche flows: developing a scale law form laboratory experiment,” Surveys in Geophysics, Vol. 24, pp. 555-568, 2003.
[23] H. Teufelsbauer, Y. Wang, and M. C. Chiou, “Flow-obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment,” Granular Matter, Vol. 11, pp. 209-220, 2009.
[24] T. Faug, P. Lachamp, and M. Naaim, “Experimental investigation on steady granular flows interacting with an obstacle down an inclined channel: study of the dead zone upstream from the obstacle. Application to interaction between dense snow avalanches and defence structures,” Natural Hazards and Earth System Sciences, Vol. 2, pp. 187-191, 2002.
[25] A. Murray, and F. Alonso-Marroquin, “Increasing granular flow rate with obstructions,” Papers in Physics, Vol. 8, Art. 080003, 2016.
[26] P. A. Cundall, and O. D. L. Strack, “Discrete numerical model for granular assemblies,” Geotechnique, Vol. 29, pp. 47-65, 1979..
[27] Y. C. Chung, H. H. Liao, and S. S. Hsiau, “Convection behavior of non-spherical particles in a vibrating bed: Discrete element modeling and experiment validation,” Powder Technology, Vol. 237, pp. 53-66, 2013.
[28] Y. Tsuji, T. Tanaka, and T. Ishiba, “Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe,” Powder Technology, Vol. 73, pp. 239-250, 1992
[29] Z. Hossain, T. Mukerji , and I. L. Fabricius, “Vp-Vs relationship and amplitude variation with offset modelling of glauconitic greensand,” Geophysical Prospecting, Vol. 60, pp. 117-137, 2012.
[30] C. Thornton, and C. W. Randall, “Applications of theoretical contact mechanics to solid particle system simulation .(Eds, Satake, M. and Jenkins, J. T.),” Elsevier, Amsterdam, pp. 133-142, 1988.
[31] C. O’Sullivan, and J. D. Bray, “Selecting a suitable time step for discrete element simulation that use the central difference time integration scheme,” Engineering Computations, Vol. 21, pp. 278-303, 2004.
[32] Y. C. Chung, and J. Y. Ooi, “Benchmark test for verifying discrete element modelling codes at particle impact level,” Granular Matter, Vol. 13, pp. 643-656, 2011.
[33] B. H. G. Brady, and E. T. Brown, “Rock mechanics,” 2rd edn, chapman & Hall, pp. 518-523, 1993.
[34] C. S. Chang, and Y. Liu, “Stress and fabric in granular material,” Theoretical and Applied Mechanics Letters, Vol. 3, 021002, 2013
[35] 邱上育,「半圓柱阻礙物對重力驅動顆粒流場之影響」,中央大學,碩士論文,民國100年
[36] R. Artoni, A. C. Santomaso, M. Go’, and P. Canu, “Scaling laws for the slip velocity in dense granular flows,” Physical Review Letters, Vol. 108, 238002, 2012.
[37] D. A. Augenstein, and R. Hogg, “An experimental study of the flow of dry powders on inclined surfaces,” Powder Technology, Vol. 19, pp. 205-215 , 1978.
[38] O. Reynolds, “Experiments showing dilutency, A property of granular materials possibly connected with gravitation,” Proceedings of the Royal. Institution of Great Britain, Vol. 51, pp. 218-227, 1887
[39] L. E. Silbert, D. Ertas, G. S. Grest, T. C. Halsey, D. Levine, and S. J. Plimpton, “Granular flow down an inclined plane: Bagnold scaling and rheology,” Physical Review E, Vol. 64, 051302, 2001.
[40] C. Y. Kuo, L. T. Sheng, S. Y. Chiu, Y. Z. Yang, Y. C. Tai, and S. S. Hsiau, “Measurement and discrete element simulation of a fixed-obstacle disturbed rapid granular chute flow,” Physical of Fluids, Vol. 27, 013305, 2015.
[41] H. T. Chou, C. F. Lee, Y. C. Chung, and S. S. Hsiau, “Discrete element modelling and experimental validation for the falling process of dry granular steps,” Powder Technology, Vol. 231, pp. 122-134 , 2012.
[42] H. Ahn, C. E. Brennen, and R. H. Sabersky, “Measurements of velocity, velocity fluctuation, density, and stresses in chute flow of granular materials,” Journal of Applied Mechanics, Vol. 58, pp. 792-803, 1991.
[43] C. C. Liao, S. S. Hsiau, and W. J. Yu, “The influence of driving conditions on flow behavior in sheared granular flows,” International Journal of Multiphase Flow 46 pp.22-31, 2012
[44] M. Nitka, J. Tejchman, and J. Kozicki, “Discrete modelling of micro-structural phenomena in granular shear zone,” Springer International Publish Switzerland, 2015.
[45] V. Jasti, and C. F. Higgs, “Experimental study of granular flows in a rough annular shear cell,” Phys. Rev., Vol.78, 041306, 2008.
|