博碩士論文 104325014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.133.124.161
姓名 何逸琨(Yi-Kun Ho)  查詢紙本館藏   畢業系所 營建管理研究所
論文名稱
(Automatic Porosity Detection for Permeable Concrete using X-ray CT Images)
相關論文
★ 電廠工程工期相關衍生費用處理機制之研究★ 應用建築資訊模型與傳統估價於工程數量計算效能比較之研究
★ 特種貨物稅及勞務稅條例對房地產的影響-以大臺北為例★ 房地合一與所得稅改對於建設公司稅制利得與經營模式之個案研析
★ 營建工程現場之人力配置決策模式★ 以財務比率導向建構使用衍生性金融商品避險之預測模式-以建設公司及營造廠為例
★ 生命週期管理導入軍艦採購模式之探討★ 建築預鑄結構體生產難易度分級與分析之研究
★ 運用關聯法則探討預鑄構件生產派工之研究★ 運用巨量資料與系統模擬建構預鑄產業人力彈性運用之決策評估模型
★ 國立大學工程設施BOT財務可行性評估流程之研究-以育成中心與宿舍為例★ 露天開挖相關安全衛生設施標準之研究 -例外情事檢討與剖析
★ 公共工程進度計算方式之認定研究★ 工程技術顧問業融資因素分析之研究
★ 以機關角度對於促進公共工程規劃設計資源再利用之法規研究★ 以承包商觀點探討客帳代理應用於營建工程專案之成本函數
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 透水混凝土因為堅固且好修補的特性而被廣泛的用於道路鋪面的材料上,而孔隙率是用來預測混凝土性能的一項重要指標,雖然傳統量測混凝土孔隙率的方法很準確,但是所花的時間卻很冗長,不過有了X光電腦斷層掃描技術後,量測混凝土孔隙率的時間將大為縮短。在這個研究裡,我們掃描了混凝土柱以量測它們的孔隙率,掃描過後會產出一系列的圖片檔案,如何處理掃描後的圖片檔案也是自動化很重要的一環。本研究的目的是建立一個自動的模式,以便於輔助傳統量測方法偵測混凝土內部結構,幫助鋪面管理更加的迅速有效率。
本研究使用了Somatom Emotion電腦斷層掃描於孔隙混凝土,在取得掃描圖片檔後,影像處理技術有被使用於取得圖片檔的混凝土屬性資訊,影像處理的結果有著高準確率且整個過程都非常的有效率,本研究產出的模式將輔助傳統量測孔隙率方法,提供圖形化的圖片給決策者能對未來問題做出更正確的決策。影像化的資訊將提供更清楚的孔隙混凝土內部結構資訊以研究混凝土柱屬性之間的關聯性。
摘要(英) Permeable Concrete has been widely used as the main road surface material due to its sturdiness and ability to be repaired quickly. The porosity of concrete has been used for the prediction of the properties of concrete. Traditional method of measuring the porosity of concrete is accurate, however it takes a lot of time to measure; but with X-ray computerized tomography (CT scan), measuring porosity would become much faster. In this study, we used CT to scan a concrete cylinder for measuring the its porosity. After the scanning, the results are a series of pictures; therefore, how we process the series of pictures is also an important part to automation. The study aims to create an automatic way to detect the internal structure of the pavement material instead of using the traditional way, and at the same time helping the pavement management to be quicker and more efficient.
In this research, we used Somatom Emotion CT scanner to scan the pervious concretes. After obtaining the images from CT scanning, the image processing method is applied in order to get the properties of the concrete through the images from CT scan. The final results after the image processing method are pretty accurate, and the whole process is very efficient. The model created in the study will assist traditional method ways for examining porosity by providing visualized images for decision makers to make correct decisions for future problems. Also, the visualized images will provide a better understanding for the inner structure of the pervious concrete to study the correlations between the properties of the concrete cylinders.
關鍵字(中) ★ 孔隙率
★ 孔隙混凝土
★ 自動化
★ X-ray 電腦斷層
關鍵字(英) ★ Porosity
★ Permeable concrete
★ automation
★ X-ray CT
論文目次 TABLE OF CONTENT
Chapter I. Introduction 1
1.1 Research Background and Motivation 1
1.2 Research Objectives 4
1.3 Research Scope and Procedure 4
Chapter II. Literature Review 6
2.1 Pervious Concrete 6
2.2 Computerized Tomography and Computational Intelligence 11
2.3 Pattern Recognition 16
Chapter III. Data Collection and Analysis 20
3.1 Specimen Preparation 20
3.2 Computerized Tomography Scan Theory 21
3.3 Method Feature 22
3.4 Device Introduction 23
3.5 Specimen Analysis Process 25
3.6 Data Analysis 26
Chapter IV. Automation Detection System 29
4.1 Image Processing Algorithm 29
4.1.1 Step 1. Segmentation 29
4.1.2 Step. 2 Deleting Texts 33
4.1.3 Step 3. Initializing a circle 34
4.1.4 Step 4. Fine-tuning the circle 38
4.2 Results and Discussion 40
Chapter V. Conclusion and Suggestion 44
5.1 Summary 44
5.2 Contribution 44
5.3 Suggestions 45
References 46
Appendix A: Result Images 51
參考文獻 [1] A. Osareh, B. Shadgar and R. Markham, "A Computational-Intelligence-Based Approach for Detection of Exudates in Diabetic Retinopathy Images," in IEEE Transactions on Information Technology in Biomedicine, vol. 13, no. 4, pp. 535-545, July 2009.
[2] AMERICAN SOCIETY FOR TESTING AND MATERIALS. Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method. ASTM International, West Conshohocken, PA, USA, 2004, ASTM C 231.
[3] B. Craenen, A. Eiben, Computational intelligence. Encyclopedia of Life Support Sciences, in: EOLSS, EOLSS Co. Ltd., 2002.
[4] Bicer, Aydin. "Compressed Sensing Based Computerized Tomography Imaging." thesis. Natural and Applied Sciences of Middle East Technical University, 2012. Web.
[5] Claisse, P. A., Cabrera J. G., and D. N. Hunt. "Measurement of Porosity as a Predictor of the Durability Performance of Concrete with and without Condensed Silica Fume." Thesis. Coventry University; Leeds University, 2001. Advances in Cement Research (n.d.): n. pag. Web.
[6] D. Poole, A. Mackworth, R. Goebel, Computational Intelligence—A Logical Approach, Oxford University Press, Oxford, UK, 1998, ISBN-10:195102703.
[7] Deng, Junjun. "Parallel computing techniques for computed tomography." PhD (Doctor of Philosophy) thesis, University of Iowa, 2011.
[8] H. Zhu, Y. Wang, K. Wang, and Y. Chen, “Particle swarm optimization (PSO) for the constrained portfolio optimization problem,” Expert Systems with Applications, Vol. 38, no. 8, pp. 10161-10169, 2011.
[9] Heikki Kalviainen, Chapter 11 - From pattern recognition methods to machine vision applications, In Advances in Independent Component Analysis and Learning Machines, Academic Press, 2015, Pages 223-247.
[10] “Hounsfield Scale.” Wikipedia. Wikimedia Foundation, n.d. Web. 21 Dec. 2016.
[11] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence, New York: Academic Press, 2001.
[12] J. Kennedy, R. Eberhart, “Particle swarm optimization,” in IEEE International Conference on Neural Networks, vol.4, pp.1942-1948, Dec. 1995.
[13] J.C. Bezdek, What is Computational Intelligence? Computational Intelligence Imitating Life, IEEE Press, New York, 1994, pp. 1–12.
[14] Jain, Anil K., Robert P. W. Duin, and Jianchang Mao. "Statistical pattern recognition: A review." IEEE Transactions on pattern analysis and machine intelligence 22.1 (2000): 4-37.
[15] Jieh-Haur Chen, Mu-Chun Su, Ruijun Cao, Shu-Chien Hsu, Jin-Chun Lu, “A self organizing map optimization based image recognition and processing model for bridge crack inspection,” Automation in Construction, Volume 73, January 2017.
[16] K.S. Fu, “A Step Towards Unification of Syntactic and Statistical Pattern Recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 5, no. 2, pp. 200-205, Mar. 1983.
[17] L. Roberts,Kandhal, P.S.,Brown,E.,D.Lee,Kennedy,T.,”Hot Mix Asphalt Materials,Mixture Design,And Construction,” 2nd, NAPA Education Foundation, Maryland, (1996)
[18] LI, Xiao-jun, and Xiao-ning ZHANG. "Application of X-ray Computerized Tomography in Analysis of Inner Structure of Asphalt Mix." Journal of Highway and Transportation Research and Development (n.d.): n. pag. Web.
[19] MASAD E. and BUTTON J. Implications of experimental measurements and analyses of the internal structure of hot-mix asphalt. Transportation Research Record, 2004, 1891, 212–220.
[20] Nhat-Duc Hoang, “Decision Support System for Construction Management Based on Evolutionary Least Squares Support Vector machine”, PhD dissertation, National Taiwan University of Science and Technology department of Construction Engineering, Taipei.
[21] R. Eberhart, J. Kennedy, “A new optimizer using particle swarm theory,” in Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp.39-43, Oct. 1995.
[22] R. G. Gonzalez and R. E. Woods, Digital Image Processing, Addison-Wesley Publishing Company, 1992.
[23] R. Picard, Affective Computing. MIT Press, 1997.
[24] R. V. Kulkarni, A. Forster and G. K. Venayagamoorthy, "Computational Intelligence in Wireless Sensor Networks: A Survey," in IEEE Communications Surveys & Tutorials, vol. 13, no. 1, pp. 68-96, First Quarter 2011.
[25] S. Watanabe, Pattern Recognition: Human and Mechanical. New York: Wiley, 1985.
[26] SHASHIDHAR N., ZHONG X., SHENOY A. V. and BASTIAN JR E. J. Investigating the role of aggregate structure in asphalt pavements. In Proceedings of the 8th Annual Symposium on Aggregates, Asphalt Concrete, Bases and Fines. International Center for Aggregates Research, Denver, CO, USA, 2000 (CD-ROM).
[27] Shelly Xiaonan Wu, Wolfgang Banzhaf, The use of computational intelligence in intrusion detection systems: A review, Applied Soft Computing, Volume 10, Issue 1, January 2010, Pages 1-35, ISSN 1568-4946
[28] Su, Y-M., Lee, M-G., Chen, G-Y., “The exploration study of fire damage to concrete specimen using x-ray computed tomography,” Proc. SPIE, 9437, 94370A (8 pp.) (2015).
[29] Synolakis, C., Leahy, R., Singh, M., Zhou, Z., Song, S., & Shannon, D. (1993). “Development of an asphalt core tomographer.”
[30] “Tools.”?SOMATOM Emotion - Siemens Healthineers Global. N.p., n.d. Web. 23 Dec. 2016.
[31] W. Duch, What is computational intelligence and where is it going? in: W. Duch, J. Man’ dziuk (Eds.), Challenges for Computational Intelligence, volume 63 of Studies in Computational Intelligence, Springer, Berlin/Heidelberg, 2007, pp. 1–13.
[32] WANG L. B., FROST J. D., VOYIADJIS G. Z. and HARMAN T. P. Quantification of damage parameters using X-ray tomography images. Mechanics of Materials, 2003, 35, No. 8, 777–790.
[33] Yi-Shin Wang. “Study on Measurement of Porosity of Light-weight Aggregate Porous Concrete.” Master thesis, National Kaohsiung First University of Science and Technology.
[34] 劉茹如,『透水混凝土鋪面透水率測定法之比較分析』,碩士論文,國立屏東科技大學,屏東縣
[35] 呂彥標,『以電腦斷層掃描量測大地材料內部裂縫及組構』,碩士論文,國立中央大學土木工程學系,中壢
[36] 莊克士 (2001),「醫學影像物理學 」,合記圖書出版社,台北市。
行政院,2016,瀝青混凝土路面施工及檢驗基準。
指導教授 陳介豪(Jieh-Haur Chen) 審核日期 2017-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明