國立中央大學 106 學年度碩士班考試入學試題

所別: 物理學系 碩士班 不分組(一般生)

共一頁 第一頁

物理學系 碩士班 不分組(在職生)

科目: 普

普通物理

本科考試禁用計算器

*請在答案 (卡)內作答

單選題(每題10分,共100分。)

1. See Fig.1, the wall of an enclosed tank is drilled a small hole whose diameter is much smaller than the diameter of the tank. The hole is open to the atmosphere of pressure P₀. The air above the liquid is maintained at a pressure P₁. While the speed of the leaking fluid from the hole is V₀, please derive the liquid density in terms of gravitational constant g, the depth H from liquid top to the hole, and depth B from the hole to the tank bottom, P₁ and P₀.

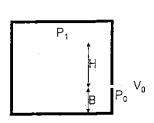
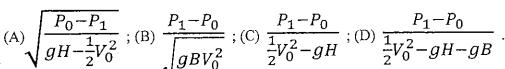
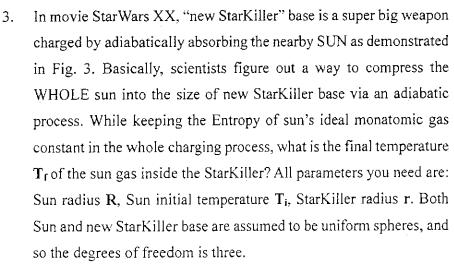




Figure 1.

- 2. Mark Watney is testing a crazy idea in Mars (see Fig.2). In order to get a free ride through Mars due to gravity, a team dig a straight tunnel from north pole to the south pole. Let's assume Mars is a perfect sphere with mass of 6.42×10^{23} kg and radius of 3400 km and neglect the air resistance. How long will a round trip take for Mark Watney when he jumps into the tunnel with zero initial velocity? The gravitational constant $G = 6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$.
 - (A) 10 hours; (B) 400 minutes; (C) 23 hours; (D) 100 minutes.

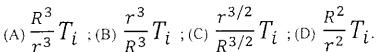


Figure 2.

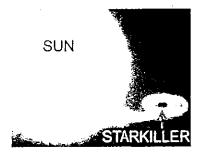


Figure 3.

注:背面有試題

國立中央大學 106 學年度碩士班考試入學試題

所別: 物理學系碩士班 不分組(一般生)

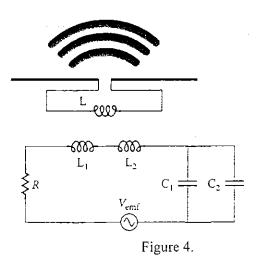
共ろ頁 第2頁

物理學系 碩士班 不分組(在職生)

科目: 普通物理

本科考試禁用計算器

*請在答案 (卡)內作答


- 4. Which of following physical quantities has no uncertainty?(A) the height of Taipei 101; (B) the speed of light in vacuum; (C) the age of the universe; (D) the diameter of a proton.
- 5. Bruce Lee's height is 170.3 cm and body weight is 63.31 kg. Please calculate Bruce Lee's body mass index (BMI) in SI unit. The BMI's formula reads

$$BMI = \frac{body\ weight}{height^2}$$

(A) 21.83 kg/m^2 ; (B) 21.8 kg/m^2 ; (C) $2.18 \times 10^{-3} \text{ kg/cm}^2$; (D) $2.18295 \times 10^{-3} \text{ kg/cm}^2$.

6. Figure 4 depicts an electromagnetic wave transmitter. In order to transmit at wavelength of 6 cm in vacuum, an engineer uses a RLC circuit with two capacitances $C_1 = 0.7$ pF, $C_2 = 0.3$ pF and an inductance $L_1 = 0.2$ nH. Please calculate the value of the second inductance L_2 .

(A) 18 μH; (B) 0.8 μH; (C) 0.8 nH; (D) 180 nH.

- 7. Which of the following equations of electric field \vec{E} and magnetic field \vec{B} has never been experimentally observed? (A) $\nabla \cdot \vec{E} < 0$; (B) $\nabla \cdot \vec{B} < 0$; (C) $\nabla \times \vec{E} < 0$; (D) $\nabla \times \vec{B} < 0$.
- With a device of nuclear magnetic resonance, one observes that a signal of radio-frequency of frequency f is absorbed by a proton in a uniform magnetic field of 0.5 T. Given the magnetic moment of a proton is 1.4×10⁻²⁶ J/T and Planck constant h = 6.626×10⁻³⁴ J·s, please calculate f.

 (A) 21 MHz;
 (B) 30 MHz;
 (C) 21 GHz;
 (D) 30 GHz.
- 9. The frequency of the hydrogen H1 line is 1.42 GHz which is observed frequently in radio astronomy. A H1 line emitted by a distant astronomical object is observed at 0.765 GHz due to Doppler redshift. Given the Hubble constant $\mathbf{H} = 17 \times 10^{-3}$ m/s/ly, where ly stands for light year, please use the Hubble's law $\mathbf{v} = \mathbf{H}\mathbf{R}$, where \mathbf{v} is the recessional velocity of the astronomical object, to estimate the distance \mathbf{R} between Earth and the recessional astronomical object. (A) 9.7×10^9 ly; (B) 1.7×10^6 ly; (C) 3.7×10^3 ly; (D) 7 ly.

國立中央大學 106 學年度碩士班考試入學試題

所別: 物理學系碩士班 不分組(一般生)

共弓頁 第 3 頁

物理學系 碩士班 不分組(在職生)

科目: 普通物理

本科考試禁用計算器

*請在答案 (卡)內作答

10. Figure 5 illustrates a particle accelerator called cyclotron. It is composed of two hollow metal semicircular containers D1 and D2, and a source of charged particle, e.g., proton, at the center. A high frequency alternating electric potential is applied to D1 and D2, which will generate an alternating electric field $\vec{E}(t)$ in the gap between D1 and D2. A uniform and static magnetic field \vec{B} is applied vertically to bend the trajectory of a charged particles in a cyclotron. In order to accelerate the charged particle, at each time when the particle passes the gap, one has to change the direction of $\vec{E}(t)$. Please calculate the angular frequency of the alternating electric voltage in terms of particle mass m, charge e, magnitude of the static magnetic field $|\vec{B}|$.

(A)
$$\frac{2\pi\left|\vec{B}\right|}{em}$$
; (B) $\frac{e\left|\vec{B}\right|}{m}$; (C) $\frac{2\pi m}{e\left|\vec{B}\right|}$; (D) $\frac{2\pi me}{\left|\vec{B}\right|}$.

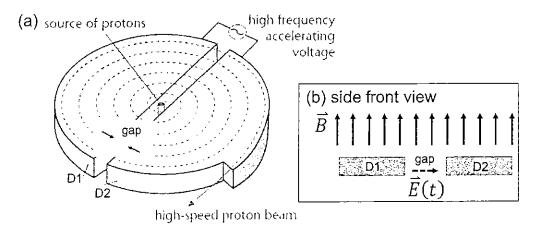


Figure 5.