博碩士論文 90242002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:72 、訪客IP:18.217.87.78
姓名 潘敬仁(Ching-Jen Pan)  查詢紙本館藏   畢業系所 物理學系
論文名稱 寬能隙半導體成長與摻雜之研究
(Growth and doping process of wide-bandgap semiconductors)
相關論文
★ 氫氣的調控對化學氣相沉積法成長石墨烯之影響★ 氮化銦鎵/氮化鎵多重量子井的激發光譜
★ 中子質化氮化鎵材料之特性研究★ 鐵磁/超導/鐵磁單電子電晶體的製作與電子自旋不平衡現象的量測
★ 砷化鎵金屬半導體場效電晶體中p型埋藏層之效應★ 熱處理對氮化銦鎵量子井雷射結構之影響與壓電效應之分析
★ 離子佈植摻雜氮化鎵薄膜的光、電、結構特性之分析★ 離子佈植技術應用於高亮度發光二極體之設計與製作
★ 矽離子佈植氮化鎵薄膜之電性研究★ 繞射式元件之製程及特性分析
★ 氮化銦鎵/氮化鎵量子井之光特性研究★ 矽離子佈植在P型氮化鎵的材料分析與 元件特性之研究
★ 氮化鎵高數值孔徑微透鏡之設計、製作與特性分析★ 微凹平面鏡及矽光學桌之組裝設計
★ 指叉型氮化鎵發光二極體之設計製作與量測★ 氮化鎵光偵測器的暗電流與激子效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 以擴散法將矽摻雜入p型氮化鎵之中使其轉變為n型氮化鎵,此種n型氮化鎵的電子移動率為90-150 cm2V-1s-1,此時鎂在n型氮化鎵中將會成為一種缺陷,因此載子的傳輸以跳躍的傳遞方式為主,載子跳躍的方式可經由這些缺陷中心進行或經由電子波函數之間的重疊所產生。在此論文中用四種不同的溫度進行擴散,其溫度分別是800℃、900℃、1000℃以及1100℃,而得到的補償比例分別為0.3、0.45、0.6以及0.75。在此種n型氮化鎵之中,電子移動率便受到補償比例的限制,導致電子跳躍為主要的傳輸機制。
氧化鋅為另一個新興的寬能隙材料,在此論文中以分子束磊晶將氧化鋅磊晶層成長於氧化鋅基板或氮化鎵基板上,以氦鎘雷射為光源所量測的光激發光譜中,氧化鋅磊晶層只發出受束縛的激子所放出的光及其聲子複製,在氧化鋅基板上所觀察到的綠光在氧化鋅磊晶層並未觀察到。以高功率的氮氣雷射為光源所量測的光激發光譜中,在成長於氮化鎵基板上的氧化鋅磊晶層可觀察到激子非彈性碰撞,在氧化鋅基板及成長於氧化鋅基板上的氧化鋅磊晶層並未觀察到激子非彈性碰撞,此不同的現象可能是由於氧化鋅基板與氮化鎵基板的品質不同所造成。
在此論文中也用不同通量比的成長條件下在氮化鎵基板上成長出氧化鋅磊晶層,以氦鎘雷射為光源所量測的光激發光譜中,在室溫下可得到激子所放出其波長為376 nm的光,其半高寬為10 nm (90 meV)。由X光繞射的量測結果可得知這些氧化鋅磊晶層中在[0002]的方向上存在著0.2%的壓縮應力,其應力的來源可能是由晶粒的邊界所產生。
摘要(英) The characteristics of p-type Mg-doped GaN films diffused with Si are studied. N-type conductivity is achieved, and the carrier mobility of diffused GaN is 90-150 cm2V-1s-1, higher than of p-GaN but less than that of epitaxially grown n-GaN. The Mg acceptor states could become deep compensating defects, and the compensation ratio NA/ND is 0.3, 0.45, 0.6, and 0.75 for 800, 900, 1000, and 1100°C diffused GaN, respectively. The carrier transport may be dominated by electron hopping through these deep compensating centers or through diffusion. The results of temperature-dependent carrier concentration indicate that thermal annealing may induce defects at the surface, leading to an additional activation energy Ed ~ 10 meV in the 200-500 K region in diffused GaN.
Photoluminescence (PL) of homoepitaxial and heteroepitaxial ZnO films grown by plasma-assisted molecular beam epitaxy is studied. Homoepitaxial ZnO layers were grown on an O-face melt-grown ZnO (0001) substrate. Heteroepitaxial ZnO layers were grown on an epitaxial GaN template predeposited by metalorganic chemical vapor deposition on a c-plane sapphire substrate. The low-excitation PL spectra of ZnO epilayers excited by a He-Cd laser exhibit only bound-exciton emission with phonon replicas. There are green luminescence from the ZnO substrate but not from the ZnO epilayers. However, under high-excitation by a N2 pulse laser, the emission due to exciton-exciton scattering dominates the PL spectrum from the heteroepitaxial ZnO layer but is not observed from the homoepitaxial ZnO layer. The difference is probably due to the different quality of the ZnO substrate and GaN template.
We have also investigated heteroepitaxial ZnO films grown under various O/Zn flux ratios. PL spectra of ZnO epilayers excited by a He-Cd laser exhibit exciton emission at 376 nm with a full width at half maximum (FWHM) of 10 nm (90 meV) at room temperature. The exciton emission intensity of stoichiometric condition is 2 times greater than that of O-rich and Zn-rich conditions. Samples grown under stoichiometric and Zn-rich conditions do not exhibit defect-related green luminescence, but samples grown under O-rich condition do. In these heteroepitaxial ZnO layers there exists interstitial Zn and Zn vacancies. X-ray diffraction measurements revealed that there exists a residual compressive strain, ε ~ -0.2%, in the [0002] direction of the ZnO epilayer. The residual strain might be attributed to grain boundaries of ZnO.
關鍵字(中) ★ 氮化鎵
★ 寬能隙
★ 擴散
★ 氧化鋅
★ 分子束磊晶
關鍵字(英) ★ GaN
★ Wide-bandgap
★ diffusion
★ ZnO
★ molecular beam epitaxy
論文目次 Chapter 1 Introduction....................1
Chapter 2 Electron transport in Si-diffused p-GaN....................8
2-1 Motivation...............8
2-2 Diffusion process.............9
2-3 Results and discussions...............10
2-4 Summary...............14
Chapter 3 Plasma-assisted molecular beam epitaxy....................25
3-1 Effusion cell...............25
3-2 Plasma source...............26
3-3 Growth procedure...............27
3-4 Calibration of O/Zn flux ratios...............28
Chapter 4 Optical properties of homoepitaxial and heteroepitaxial ZnO..............36
4-1 Motivation...............................36
4-2 Experimental procedure...................37
4-3 Results and discussions..................38
4-4 Summary..................................41
Chapter 5 Heteroepitaxial ZnO grown on GaN under various O/Zn flux ratios................53
5-1 Motivation...............................53
5-2 Experiments..............................54
5-3 Results and discussions..................55
5-4 Summary..................................60
Chapter 6 Conclusions.........................69
Publication list...............................71
Awards.........................................73
參考文獻 1. Y. Irokawa, J. Kim, F. Ren, K. H. Baik, B. P. Gila, C. R. Abernathy, S. J. Pearton, C. C. Pan, G. T. Chen, and J. I. Chyi, Appl. Phys. Lett. 83, 4987 (2003).
2. J. K. Sheu, M. L. Lee, L. S. Yeh, C. J. Kao, C. J. Tun, M. G. Chen, G. C. Chi, S. J. Chang, Y. K. Su, and C. T. Lee, Appl. Phys. Lett. 81, 4263 (2002).
3. J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S. J. Chang, and Y. K. Su, IEEE Photon. Technol. Lett. 14, 450 (2002).
4. J. C. Zolper, R. J. Shul, A. G. Baca, R. G. Wilson, S. J. Pearton, and R. A. Stall, Appl. Phys. Lett. 68, 2273 (1996).
5. J. K. Sheu and G. C. Chi, J. Phys. Condens. Matter 14, R657 (2002).
6. S. J. Pearton, J. C. Zolper, R. J. Sheu, and F. Ren, J. Appl. Phys. 86, 1 (1999).
7. J. K. Sheu, M. L. Lee, C. J. Tun, C. J. Kao, L. S. Yeh, S. J. Chang, and G. C. Chi, IEEE J. Select. Topics. Quantum Electron. 8, 767 (2002).
8. J. K. Sheu, C. J. Tun, M. S. Tsai, C. C. Lee, G. C. Chi, S. J. Chang, and Y. K. Su, J. Appl. Phys. 91, 1845 (2002).
9. C. F. Lin, C. H. Cheng, G. C. Chi, C. J. Bu, and M. S. Feng, Appl. Phys. Lett. 76, 1878 (2000).
10. Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
11. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 73, 1038 (1998).
12. D. C. Look, Mater. Sci. Eng. B 80, 383 (2001).
13. D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).
14. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 70, 2230 (1997).
15. Ohtomo, M. Kawasaki, Y. Sakurai, Y. Yoshida, H. Koinuma, P. Yu, Z. Tang, G. Wong, and Y. Segawa, Mater. Sci. Eng. B 54, 24 (1998).
16. C. J. Pan, C. W. Tu, J. J. Song, G. Cantwell, C. C. Lee, B. J. Pong, and G. C. Chi, Proc. SPIE 5722, 410 (2005).
17. K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, Jpn. J. Appl. Phys., Part 2 36, L1453 (1997).
18. K. Ogata, T. Kawanishi, K. Maejima, K. Sakurai, Sz. Fujita, and Sg. Fujita, Jpn. J. Appl. Phys., Part 2 40, L657 (2001).
19. S. F. Chichibu, T. Yoshida, T. Onuma, and H. Nakanishi, J. Appl. Phys. 91, 874 (2002).
20. Y. Chen, D. Bagnall, and T. Yao, Mater. Sci. Eng. B 75, 190 (2000).
21. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, J. Vac. Sci. Technol. B 22, 932 (2004).
22. H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett. 15, 327 (1969).
23. C. J. Pan, G. C. Chi, B. J. Pong, J. K. Sheu, and J. Y. Chen, J. Vac. Sci. Technol. B 22, 1727 (2004).
24. C. J. Pan, C. W. Tu, J. J. Song, G. Cantwell, C. C. Lee, B. J. Pong, and G. C. Chi, accepted by J. Cryst. Growth.
25. C. J. Pan, W. M. Wang, C. W. Tu, C. J. Tun, and G. C. Chi, submitted to Mater. Chem. Phys.
指導教授 紀國鐘(Gou-Chung Chi) 審核日期 2005-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明