參考文獻 |
[ 1 ] Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig T, Shindyalov
IN, Bourne PE. The protein data bank. Nucleic Acids Res. 2000;28: 235-242.
[ 2 ] Neidigh JW, Fesinmeyer RM, Andersen NH. Designing a 20-residue protein ,
Nat. Struct. Bio 2002;9: 425-430.
[ 3 ] Simmerling C, Strockbine B, Roitberg AE. All-atom structure prediction and
folding simulations of a stable protein. J. Am. Chem. Soc. 2002;38:11258-11259.
[ 4] van Gunsteren, W. F., Berendsen, H. J. C. Computer simulation of molecular
dynamics: Methodology, applications, and perspectives in chemistry. Angew.
Chem. Int. Ed. Engl. 29:992–1023, 1990.
[ 5] Fraaije, J. G. E. M. Dynamic density functional theory for microphase separation
kinetics of block copolymer melts. J. Chem. Phys. 99:9202–9212, 1993.
[ 6] van Gunsteren, W. F., Berendsen, H. J. C. Algorithms for macromolecular
dynamics and constraint dynamics. Mol. Phys. 34:1311–1327, 1977.
[ 7] Geman, Geman. IEEE Trans. Patt. Anal. Mach. Int. 6:721, 1984.
[ 8] Nilges, M., Clore, G. M., Gronenborn, A. M. Determination of three-dimensional
structures of proteins from interproton distance data by dynamical simulated
annealing from a random array of atoms. FEBS Lett. 239:129–136, 1988.
[ 9] van Schaik, R. C., Berendsen, H. J. C., Torda, A. E., van Gunsteren, W. F. A
structure refinement method based on molecular dynamics in 4 spatial
dimensions. J. Mol. Biol. 234:751–762, 1993.
[ 10] Zimmerman, K. All purpose molecular mechanics simulator and energy
minimizer. J. Comp. Chem. 12:310–319, 1991.
[ 11] Ryckaert, J. P., Ciccotti, G., Berendsen, H. J. C. Numerical integration of the
Cartesian equations of motion of a system with constraints; molecular dynamics
of n-alkanes. J. Comp. Phys. 23:327–341, 1977.
[ 12] Miyamoto, S., Kollman, P. A. SETTLE: An analytical version of the SHAKE
and RATTLE algorithms for rigid water models. J. Comp. Chem. 13:952–962,
1992.
[ 13] Hess, B., Bekker, H., Berendsen, H. J. C., Fraaije, J. G. E. M. LINCS: A linear
constraint solver for molecular simulations. J. Comp. Chem. 18:1463–1472,
1997.
[ 14] Berendsen, H. J. C., Postma, J. P. M., DiNola, A., Haak, J. R. Molecular
dynamics with coupling to an external bath. J. Chem. Phys. 81:3684–3690, 1984.
[ 15] Nos´e, S. A molecular dynamics method for simulations in the canonical
ensemble. Mol. Phys. 52:255–268, 1984
[ 16 ] Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions.
Phys. Rev. A 31: 1695–1697, 1985.
[ 17] Berendsen, H. J. C. Transport properties computed by linear response through
weak coupling to a bath. In: Computer Simulations in Material Science. Meyer,
M., Pontikis, V. eds. Kluwer 1991 139–155.
[ 18] Nos´e, S. A molecular dynamics method for simulations in the canonical
ensemble. Mol. Phys. 52:255–268, 1984.
[ 19] ] Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions.
Phys. Rev. A 31:1695–1697, 1985.
[ 20] Recently the news has reported that over 50% of US households now have a
personal computer.
[ 21] Moore's Law states that for a given cost, the amount of computing power
available for that cost doubles approximately every eighteen months.
[ 22] The Internet Domain Survey at http://www.nw.com claims over 43,000,000
connected computers ("hosts") as of January 1999. The data collected by this
survey clearly shows an exponential growth trend.
[ 23] Zero-knowledge proofs are one way to establish that assigned work has been
done to an arbitrarily high confidence level. Full double checking is one type of
zero-knowledge proof.
[ 24] Geyer GJ, Thompson EA. Annealing markov chain Monte Carlo with
applications to ancestral inference. J. Am. Stat. Assn. 1995;90(431):909-920.
[ 25] Falcioni, M.; Deem, M.W. J. Chem. Phys. 1999, 110, 1754-1766.
[ 26] Wu, M.G.; Deem, M.W. Mol. Phys. 1999, 97, 559-580.
[ 27] Yan, Q.L.; Pablo, J.J.de J. Chem. Phys. 1999, 111, 9509-9516.
[ 28] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.N. Teller, E.Teller,
Equations of state calculations by fast computing machines. J. Chem. Phys.,
21:10871092,1953
[ 29] D. Frenkel, B. Smit, Understanding Molecular Simulation, Academic
Press ,2002
[ 30] P.J. in't Veld, G.C. Rutledge, TemperatureDependent Elasticity of a
Semicrystalline Interphase Composed of Freely Rotating Chains,
Macromolecules, 36:73587365,2003
[ 31] MP92 to 3em, Simulated tempering: A new monte carlo scheme, Europhys. Lett.
19 (1992), 451
[ 32] P. Lyubartsev, A.A. Martinovski andS. V. Shevkunov, and P.N. Vorontsov-
Velyaminov, JCP 96 (1992), 1776
[ 33] Hukushima K, Nemoto K. Exchange Monte Carlo method and application to
spin glass simulations. J. Phys. Soc. Jpn. 1996; 65: 1604-1608.
[ 34] Ulrich H.E. Hansmann and Yuko Okamoto, Numerical comparison of three
recentlyproposedalgorithms in the protein folding problem, J. Comput. Chem 18
(1997), 920
[ 35 ] Hansmann UHE. Parallel tempering algorithm for conformational studies of
biological molecules. Chem. Phys. Lett. 1997;281: 140-150.
[ 36] Wanga F, Jordan KD. Parallel-tempering Monte Carlo simulations of the finite
temperature behavior of (H2O)6- , J. of Chem. Phys., 2003;119:11645-11653.
[ 37] Neirotti JP, Calvo F, Freeman DL, Doll JD. Phase changes in 38-atom
Lennard-Jones clusters I. A parallel tempering study in the canonical ensemble. J.
of Chem. Phys, 2000; 112:10340-10349.
[ 38] Kihara D, Lu H, Kolinski A, Skolnick JP. An ab initio protein structure
prediction method that uses threading-based tertiary restraints. Natl. Acad. Sci.
USA. 2001; 98:10125-10130.
[ 39 ] Hansmann UHE, Okamoto Y. New Monte Carlo algorithms for protein folding.
Curr. Opin. Struct. Biol. 1999;9: 177-184.
[ 40 ] Hansmann UHE, Okamoto Y. The generalized-ensemble approach for protein
folding simulations. In: Stauffer D, editor. Annual reviews in computational
physics. 1998; Singapore, World Scientific.
[ 41 ] Shirakura T, Matsubara F. Reexamination of the SG transition in the
two-dimensional +/-J Ising model. J. Phys. Soc. Jpn. 1996;65: 3138-3141.
[ 42 ] Sugita Y, Okamoto Y. Replica-exchange molecular dynamic method for protein
folding. Chem. Phys. Lett. 1999;314: 141-151.
[ 43 ] Neidigh JW, Fesinmeyer RM, Pricket KS ,Andersen NH. Exendin-4 and
glucagon-like-peptide-1: NMR structural comparisons in the solution and
micelle-associated states. Biochemistry 2001;40, 13188-13200.
[ 44 ] Wang JM, Cieplak P, Kollman PA. How well does a restrained electrostatic
potential (RESP) model perform in calculating conformational energies of
organic and biological molecules? J. Comput. Chem. 2000;21: 1049-1074.
[ 45 ] Qiu LL, Pabit SA, Roitberg AE, Hagen SJ. Smaller and faster: the 20-residue
trp-cage protein folds in 4 us J. Am. Chem. Soc. 2002;124: 12952-12953.
[ 46 ] Snow CD, Zagrovic B, Pande VS. The trp cage: folding kinetics and unfolded
state topology via molecular dynamics simulations. J. Am. Chem. Soc. 2002;
124: 14548-14549.
[ 47 ] Berendsen HJC, Van der Spoel D, Van Drunen R. GROMACS: A
message-passing parallel molecular dynamics implementation. Comp. Phys.
Comm. 1995;91: 43-56.
[ 48 ] Lindahl E, Hess B, Van der Spoel D. GROMACS 3.0: A package for molecular
simulation and trajectory analysis. J. Mol. Mod. 2002;7: 306-317.
[ 49 ] Nose S. A molecular dynamics method for simulations in the canonical
ensemble. Mol. Phys. 1984;52: 255-268.
[ 50 ] Hoover W. Canonical dynamics: equilibrium phase-space distributions. Phys.
Rev. 1985;A31: 1695-1697.
[ 51 ] Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A linear constraint
solver for molecular simulations. J. Comp. Chem. 1997;18: 1463-1472.
[ 52 ] LO JL, YU CP, LEE HC. TBA
[ 53 ] Hukushima K, Nemoto K. Exchange Monte Carlo method and applications to
spin glass simulations. J. Phys. Soc. (Japan) 1996;65: 1604-1608.
[ 54] Pitera JW, Swope W. Understanding folding and design: replica-exchange
simulations of "trp-cage" miniproteins. PNAS. 2003; 100: 7587-7592.
[ 55] Zhou R. Trp-cage:Folding free energy landscape in explicit water. PNAS. 2003;
100(23):13280-13285.
[ 56] Lin CY, Hu CK, Hansmann UHE. Parallel Tempering Simulations of HP-36.
PROTEINS:Structure, Function and Genetics. 2003;52: 436-445.
[ 57] F. Calvo et al., J. Chem. Phys. 112, 10350 (2000).
[ 58] P. Lyubartsev, A.A. Martinovski andS. V. Shevkunov, and P.N. Vorontsov-
Velyaminov, JCP 96 (1992), 1776
[ 59] U. H. E. Hansmann, Eur. Phys. J. B 12 (1999), 607
[ 60] Zhang Y, Kihara D, Skolnick J. Local energy landscape flattening: Parallel hyperbolic Monte Carlo sampling of protein folding. PROTEINS: Struct. Func. and Gen. 20002;48:192201.
[61] Chowdhury S, Lee MC, Xiong G, Duan Y. Ab initio Folding Simulation of the Trpcage Mini-protein Approaches NMR Resolution J. Mol. Biol. 2003;327:711-717. |