摘要(英) |
The localization of energy-momentum for gravitating systems has remained an
important problem since the time of Einstein. Due to the equivalence principle
there is no proper energy-momentum density. Traditional approaches led to a va-
riety of reference frame dependent expressions, referred to as pseudotensors. A
more modern idea is quasilocal energy-momentum. C.M. Chen, using a covariant
Hamiltonian formalism, gave four preferred Hamiltonian boundary term quasilocal
energy-momentum expressions. The classical pseudotenor expressions, as well as the
quasilocal expressions generally agree for the total (i.e. global) values but give quite
di®erent values locally. It is desirable to ¯nd some way to choose which expression
gives a better description of the energy-momentum for a gravitating system. Here
we shall test both the well-known classical pseudotensors (in particular, Einstein,
Papapetrou, Landau-Lifshits ’’ Bergmann-Thomson, M¿ller (1958), M¿ller (1961),
Weinberg) and the covariant Hamiltonian quasilocal boundary expressions in a dif-
ferent regime, namely the small region limit|both inside matter and in vacuum.
All of the expressions|except for M¿ller’’s 1958 expression|give the correct mate-
rial limit. In small vacuum regions we found some interesting results which allows
us to choose which expressions satisfy an important physical property: positive en-
ergy. None of the classical pseudotensors satis¯es this positivity property, however
there is a one-parameter set of linear combinations which, to lowest non-vanishing
order is proportional to the Bel-Robinson tensor and hence is positive for small
regions. Moreover, we have constructed an in¯nite set (with 10 constant parame-
ters) of additional new holonomic pseudotensors which, although rather contrived,
satisfy this important positive energy requirement. On the other hand we found
that M¿ller’’s 1961 teleparallel-tetrad energy-momentum expression naturally has
this Bel-Robinson property. For C.M. Chen’’s covariant-symplectic quasilocal ex-
pressions we found that one, corresponding to the natural boundary choices, gives
this desired Bel-Robinson positivity result in orthonormal frames. Moreover within
a two parameters modi¯cation of the Chen-Nester four expressions, one gives an
extra nice result in holonomic frames. |
參考文獻 |
[1] L.B. Szabados, Living Rev. Relativity, 7 (2004) 4
http://www.livingreviews.org/lrr-2004-4
[2] G. Berqvist, Class. Quantum Grav. 9 (1992) 1753{68, 1917{22
[3] L.B. Szabados, Class. Quantum Grav. 16 (1999) 2889{2904; gr-qc/99101068
[4] C.M. Chen and J.M. Nester, Class. Quantum Grav. 16 (1999) 1279{1304; gr-
qc/9809020.
[5] G.T. Horowitz, in Asymptotic Behaviour of Mass and Spacetime Geometry"
Lecture Nites in Physics 202. Springer Verlag, ed F.J. Flaherty, page 1.
[6] C.M. Chen, J.M. Nester and R.S. Tung, Physical Review D 72 104020 (2005).
[7] J.M. Nester, Class. Quantum Grav. 21 S261 (2004).
[8] C.C. Chang, J.M. Nester C.M. Chen, Phys. Rev. Lett. 83 (1999) 1897{901; gr-
qc/9809040
[9] C.M. Chen and J.M. Nester, Gravitation & Cosmology 6 (2000) 257{70; gr-
qc/0001088
[10] F. Gronwald and F. W. Hehl, On the gauge aspects of gravity," [arXiv:gr-
qc/9602013].
[11] J. Katz, J. Bi·c¶ak and D. Lynden-Bell, Phys. Rev. D55, 5957 (1997).
[12] A. Arnowitt, S. Deser and C. W. Misner, The dynamics of general relativity, in
Gravitation: An Introduction to Current Research, ed. L. Witten (Wiley, New
York, 1962) pp 227-65.
[13] T. Regge and C. Teitelboim, Ann. phys. 88, 286 (1974).
[14] R. Beig and N. ¶O Murchadha, Ann. Phys. 174, 463 (1987).
[15] L. Szabados, Class. Quantum Grav. 20, 2627 (2003) [arXiv:gr-qc/0302033].
[16] S. Deser, J.S. Franklin and D. Seminaea (1999). Class. Quantum Grav. 16,
2815.
[17] J.M.M. Senovilla, Super-energy tensors, gr-qc/9906087.
[18] L. Bel, C. R. Acad. Sci. (Paris) 247 (1958) 1094.
[19] L. Bel, PhD Thesis (C.D.U. et S.E.D.E.S. paris 5e) (1960).
[20] L. Bel, Cahiers de Physique 138 (1962) 59.
[21] M.D. Roberts, General Rel. Grav. 20 (1988) 775-792.
[22] G.T. Horowitz and B.G. Schmidt (1982). Proc. Roy. Soc. A, 381, 215.
[23] J.M.M. Senovilla, (Super)n-energy for arbitrary ¯elds and its interchange: con-
served quantities. gr-qc/9905057.
[24] M.A.G. Bonilla and J.M.M. Senovilla, Gen. Rel. Grav. 29, 91 (1997).
[25] I. Krishnasamy, Gen. Rel. Grav. 17, 621 (1985); G. Bergqvist, Class. Quantum
Grav. 11, 3031 (1994); L.B. Szabados, gr-qc/9901068.
[26] A. Komar, Phys. Rev. 164, 1595 (1967).
[27] J. Garecki, Acta Phys. Pol. B8 159 (1977).
[28] S. Deser, in Gravitation and Geometry, eds. W. Rindler and A. Trautman
(Naples, Bibliopolis, (1987).
[29] S. Deser and Z. Yang, Class. Quantum Grav. 7, 1491 (1990).
[30] B. Mashhoon, J.C. Clune and H. Quevedo Class. Quantum Garv. 16, 1137
(1999).
[31] C.W. Misner, K.S. Thorne and J.A. Wheeler 1973 Gravitation (San Francisco,
CA: Freeman).
[32] J.M.M. Senovilla, Remarks on superenergy tensors, gr-qc/9901019.
[33] J. Garecki, Class. Quantum Grav., 2 (1985) 403-408.
[34] C.C. Chang, The localization of gravitational energy: pseudotensors and qu-
sailocal expressions." (M.Sc. thesis NCU, 1998).
[35] L.D. Landau and E.M. Lifshitz, The classical theory of ¯elds, 2nd edition (Read-
ing, Mass.: Addison-Wesley, 1962)
[36] Freud, Ph., ÄUber die AusdrÄucke der Gesamtenergie und des Gesamtimpulses
eines Materiellen Systems in der allgemeninen RelativitÄatstheorie, Ann. Math,
40, 417 (1939).
[37] R.C. Tolman, Relativity, Theomodynamics and Cosmology (Lodon: Oxford
University Press, 1934).
[38] P.G. Bergmann and R. Thomson, Spin and angular momentum in general re-
altivity, Phys. Rev. 89, 400 (1953).
[39] A. Papapetrou, Einstein's theory of gravitation and °at space, Proc. Roy. Irish.
Acad. A52, 11 (1948).
[40] S. Weinberg, Gravitation and Cosmology (Weley, New York, 1972).
[41] C. M¿ller, On the localization of the energy of a physical system in the general
relativity, Ann. Phys. 4, 347 (1958).
[42] J.W. Maluf, J.F.da Rocha-Neto, T.M.L.Toribio and K.H.Castello-Branco
(2002) Phys. Rev. D 65 124001
[43] W.Q. Li and W.T. Ni (1979). J. Math. Phys. 20(9), 1925.
[44] M. Carmeli 1982 Classical Fields General Relativity and Gauge Theory (World
Scienti¯c) p488.
[45] C. M¿ller, Mat. Fys. Dan. Vid. Selsk. 1, No.10, 1 (1961); Ann. Phys. 12, 118
(1961).
[46] J. Kijowski and W.M. Tulczyiew (1979) A symplectic Framework for Field
Theories (Lecture Notes in Physics Vol.107) (Berlin: Springer)
[47] K. Hayashi and T. Shirafuji, Phys. Rev. D19, 3524 (1979).
[48] G. Bergqvist, Energy of small surfaces", Class. Quantum Grav., 11 (1994)
3013-3023.
[49] G. Bergqvist and M. Ludvigsen, Qusai-local mass near a point", Class. Quan-
tum Grav., 4 (1987) L29-L32. |