博碩士論文 90242010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:18.119.162.226
姓名 蘇樓來(Lau-Loi So)  查詢紙本館藏   畢業系所 物理學系
論文名稱 準區域的膺張量和陳聶式子
(Quasi-local energy-momentum and pseudotensors for GR in small regions)
相關論文
★ Kerr-Sen 時空的準局域能量與角動量★ Brill 波時空於特殊正交坐標系的初值問題之數值解
★ Teleparallel重力理論中的準局域能量、動量和角動量★ 度規仿射重力理論中的準局域能量-動量
★ 廣義相對論理論中之準局域質心距★ 幾何代數與微分形式間之轉換及其在重力之應用
★ 幾何代數下的旋量與重力場正能量★ 幾何代數與Clifforms之轉換及其於重力哈密頓函數與準局域量之應用
★ Teleparallel 理論中之準局域質心距★ 廣義相對論的準局域量的小球極限
★ 重力場中準局域角動量的旋子表述★ 有Torsion效應的宇宙
★ 準局部能量與參考系之選擇★ 在Kerr幾何的特殊正交座標系和狄拉克旋子
★ 球對稱時空的準局域能量★ Poincaré Gauge Theory with Coupled Even and Odd Parity Spin-0 Dynamic Connection Modes: Isotropic Bianchi Cosmologies
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 始於愛氏,能動量區域化是引力論重要課題。基於對等原理,引力能動量密度不存在。傳統解決方法是用不同標架膺張量,近代方法是膺區域能動量。陳江梅透過哈密頓方法,提出四組準局域能動量方程式。大部份古典膺張量方程式有相同宏觀能動量值,卻不同於小區域;在眾多表達式中,尋找適切描述引力能動量。我們研究古典膺張量(例如愛氏、柏氏或布氏、1958和1961年版本的毛氏與溫氏)和協變哈密頓準局域邊界方程式,物理條件在物質和真空。於小區域尺度,其計算結果可以篩選那種表達式能夠滿足正能量要求,沒有一個古典膺張量表達式滿足正能量特性。但有1個常數綫性組合能夠給出彪張量,即小區域正能量;還有3個常數綫性組合的柯座標架膺張量亦能給出彪張量。再者,應用正座標架,1961年的毛氏式子和陳江梅的其一表達式,與及在柯座標架修正版的陳聶表達式,這三個式子均在自然邊界條件下給出彪張量。
摘要(英) The localization of energy-momentum for gravitating systems has remained an
important problem since the time of Einstein. Due to the equivalence principle
there is no proper energy-momentum density. Traditional approaches led to a va-
riety of reference frame dependent expressions, referred to as pseudotensors. A
more modern idea is quasilocal energy-momentum. C.M. Chen, using a covariant
Hamiltonian formalism, gave four preferred Hamiltonian boundary term quasilocal
energy-momentum expressions. The classical pseudotenor expressions, as well as the
quasilocal expressions generally agree for the total (i.e. global) values but give quite
di®erent values locally. It is desirable to ¯nd some way to choose which expression
gives a better description of the energy-momentum for a gravitating system. Here
we shall test both the well-known classical pseudotensors (in particular, Einstein,
Papapetrou, Landau-Lifshits ’’ Bergmann-Thomson, M¿ller (1958), M¿ller (1961),
Weinberg) and the covariant Hamiltonian quasilocal boundary expressions in a dif-
ferent regime, namely the small region limit|both inside matter and in vacuum.
All of the expressions|except for M¿ller’’s 1958 expression|give the correct mate-
rial limit. In small vacuum regions we found some interesting results which allows
us to choose which expressions satisfy an important physical property: positive en-
ergy. None of the classical pseudotensors satis¯es this positivity property, however
there is a one-parameter set of linear combinations which, to lowest non-vanishing
order is proportional to the Bel-Robinson tensor and hence is positive for small
regions. Moreover, we have constructed an in¯nite set (with 10 constant parame-
ters) of additional new holonomic pseudotensors which, although rather contrived,
satisfy this important positive energy requirement. On the other hand we found
that M¿ller’’s 1961 teleparallel-tetrad energy-momentum expression naturally has
this Bel-Robinson property. For C.M. Chen’’s covariant-symplectic quasilocal ex-
pressions we found that one, corresponding to the natural boundary choices, gives
this desired Bel-Robinson positivity result in orthonormal frames. Moreover within
a two parameters modi¯cation of the Chen-Nester four expressions, one gives an
extra nice result in holonomic frames.
關鍵字(中) 關鍵字(英) ★ gravitation
★ pseodotensor
論文目次 1 Introduction 1
2 Gravitational energy-momentum and its localization 7
2.1 The classical pseudotensors . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Hamiltonian boundary and quasi-local expressions . . . . . . . . . . . 11
2.3 Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Riemann Normal Coordinates . . . . . . . . . . . . . . . . . . . . . . 15
3 Some properties of the Bel-Robinson and Weyl tensors 17
3.1 Some properties of the Bel-Robinson tensor . . . . . . . . . . . . . . 17
3.2 Some properties of the Weyl tensor . . . . . . . . . . . . . . . . . . . 20
4 The classical holonomic pseudotensors 24
4.1 Einstein pseudotensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Bergmann-Thomson pseudotensor . . . . . . . . . . . . . . . . . . . . 28
4.3 Papapetrou pseudotensor . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Weinberg pseudotensor . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 M¿ller 58 pseudotensor . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 The modi¯cation of the M¿ller 58 pseudotensor . . . . . . . . . . . . 34
4.7 The combination of the classical holonomic pseudotensors . . . . . . . 35
4.8 A large class of new pseudotensors which satisfy the positive require-
ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5 The tetrad/teleparallel theory 43
5.1 The Tetrad theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Teleparallel theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Orthonormal frames . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 The M¿ller 1961 classical energy-momentum density in tetrad-teleparallel
expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6 Covariant Hamiltonian formalism & quasilocal boundary terms for
metric-compatible gravity 49
6.1 Covariant Hamiltonian formalism . . . . . . . . . . . . . . . . . . . . 49
6.2 Metric-compatible gravity . . . . . . . . . . . . . . . . . . . . . . . . 52
7 Einstein and Einstein-Cartan theory 54
7.1 Einstein GR theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2 Einstein-Cartan theory . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8 The four orthonormal frame expressions: small region limit 60
8.1 Einstein's gravity theory . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.2 Expression for quasilocal quantities . . . . . . . . . . . . . . . . . . . 61
8.3 Application of the four expressions in small region limit . . . . . . . . 64
8.4 Comparison of our results with others . . . . . . . . . . . . . . . . . . 67
9 The modi¯cation of Chen-Nester's four quasilocal expressions 69
9.1 Chen-Nester's 4 boundary expressions . . . . . . . . . . . . . . . . . . 69
9.2 The modi¯cation of Chen-Nester's 4 boundary expressions . . . . . . 73
9.3 On the physical interpretation of the modi¯ed Chen-Nester's 4 bound-
ary expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.4 Gravitation application of the new quasilocal expressions . . . . . . . 76
10 Conclusion 82
Bibliography 86
參考文獻 [1] L.B. Szabados, Living Rev. Relativity, 7 (2004) 4
http://www.livingreviews.org/lrr-2004-4
[2] G. Berqvist, Class. Quantum Grav. 9 (1992) 1753{68, 1917{22
[3] L.B. Szabados, Class. Quantum Grav. 16 (1999) 2889{2904; gr-qc/99101068
[4] C.M. Chen and J.M. Nester, Class. Quantum Grav. 16 (1999) 1279{1304; gr-
qc/9809020.
[5] G.T. Horowitz, in Asymptotic Behaviour of Mass and Spacetime Geometry"
Lecture Nites in Physics 202. Springer Verlag, ed F.J. Flaherty, page 1.
[6] C.M. Chen, J.M. Nester and R.S. Tung, Physical Review D 72 104020 (2005).
[7] J.M. Nester, Class. Quantum Grav. 21 S261 (2004).
[8] C.C. Chang, J.M. Nester C.M. Chen, Phys. Rev. Lett. 83 (1999) 1897{901; gr-
qc/9809040
[9] C.M. Chen and J.M. Nester, Gravitation & Cosmology 6 (2000) 257{70; gr-
qc/0001088
[10] F. Gronwald and F. W. Hehl, On the gauge aspects of gravity," [arXiv:gr-
qc/9602013].
[11] J. Katz, J. Bi·c¶ak and D. Lynden-Bell, Phys. Rev. D55, 5957 (1997).
[12] A. Arnowitt, S. Deser and C. W. Misner, The dynamics of general relativity, in
Gravitation: An Introduction to Current Research, ed. L. Witten (Wiley, New
York, 1962) pp 227-65.
[13] T. Regge and C. Teitelboim, Ann. phys. 88, 286 (1974).
[14] R. Beig and N. ¶O Murchadha, Ann. Phys. 174, 463 (1987).
[15] L. Szabados, Class. Quantum Grav. 20, 2627 (2003) [arXiv:gr-qc/0302033].
[16] S. Deser, J.S. Franklin and D. Seminaea (1999). Class. Quantum Grav. 16,
2815.
[17] J.M.M. Senovilla, Super-energy tensors, gr-qc/9906087.
[18] L. Bel, C. R. Acad. Sci. (Paris) 247 (1958) 1094.
[19] L. Bel, PhD Thesis (C.D.U. et S.E.D.E.S. paris 5e) (1960).
[20] L. Bel, Cahiers de Physique 138 (1962) 59.
[21] M.D. Roberts, General Rel. Grav. 20 (1988) 775-792.
[22] G.T. Horowitz and B.G. Schmidt (1982). Proc. Roy. Soc. A, 381, 215.
[23] J.M.M. Senovilla, (Super)n-energy for arbitrary ¯elds and its interchange: con-
served quantities. gr-qc/9905057.
[24] M.A.G. Bonilla and J.M.M. Senovilla, Gen. Rel. Grav. 29, 91 (1997).
[25] I. Krishnasamy, Gen. Rel. Grav. 17, 621 (1985); G. Bergqvist, Class. Quantum
Grav. 11, 3031 (1994); L.B. Szabados, gr-qc/9901068.
[26] A. Komar, Phys. Rev. 164, 1595 (1967).
[27] J. Garecki, Acta Phys. Pol. B8 159 (1977).
[28] S. Deser, in Gravitation and Geometry, eds. W. Rindler and A. Trautman
(Naples, Bibliopolis, (1987).
[29] S. Deser and Z. Yang, Class. Quantum Grav. 7, 1491 (1990).
[30] B. Mashhoon, J.C. Clune and H. Quevedo Class. Quantum Garv. 16, 1137
(1999).
[31] C.W. Misner, K.S. Thorne and J.A. Wheeler 1973 Gravitation (San Francisco,
CA: Freeman).
[32] J.M.M. Senovilla, Remarks on superenergy tensors, gr-qc/9901019.
[33] J. Garecki, Class. Quantum Grav., 2 (1985) 403-408.
[34] C.C. Chang, The localization of gravitational energy: pseudotensors and qu-
sailocal expressions." (M.Sc. thesis NCU, 1998).
[35] L.D. Landau and E.M. Lifshitz, The classical theory of ¯elds, 2nd edition (Read-
ing, Mass.: Addison-Wesley, 1962)
[36] Freud, Ph., ÄUber die AusdrÄucke der Gesamtenergie und des Gesamtimpulses
eines Materiellen Systems in der allgemeninen RelativitÄatstheorie, Ann. Math,
40, 417 (1939).
[37] R.C. Tolman, Relativity, Theomodynamics and Cosmology (Lodon: Oxford
University Press, 1934).
[38] P.G. Bergmann and R. Thomson, Spin and angular momentum in general re-
altivity, Phys. Rev. 89, 400 (1953).
[39] A. Papapetrou, Einstein's theory of gravitation and °at space, Proc. Roy. Irish.
Acad. A52, 11 (1948).
[40] S. Weinberg, Gravitation and Cosmology (Weley, New York, 1972).
[41] C. M¿ller, On the localization of the energy of a physical system in the general
relativity, Ann. Phys. 4, 347 (1958).
[42] J.W. Maluf, J.F.da Rocha-Neto, T.M.L.Toribio and K.H.Castello-Branco
(2002) Phys. Rev. D 65 124001
[43] W.Q. Li and W.T. Ni (1979). J. Math. Phys. 20(9), 1925.
[44] M. Carmeli 1982 Classical Fields General Relativity and Gauge Theory (World
Scienti¯c) p488.
[45] C. M¿ller, Mat. Fys. Dan. Vid. Selsk. 1, No.10, 1 (1961); Ann. Phys. 12, 118
(1961).
[46] J. Kijowski and W.M. Tulczyiew (1979) A symplectic Framework for Field
Theories (Lecture Notes in Physics Vol.107) (Berlin: Springer)
[47] K. Hayashi and T. Shirafuji, Phys. Rev. D19, 3524 (1979).
[48] G. Bergqvist, Energy of small surfaces", Class. Quantum Grav., 11 (1994)
3013-3023.
[49] G. Bergqvist and M. Ludvigsen, Qusai-local mass near a point", Class. Quan-
tum Grav., 4 (1987) L29-L32.
指導教授 聶斯特(James M. Nester) 審核日期 2006-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明