博碩士論文 91222005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.217.207.112
姓名 羅尉彰(Wei-Jhang Luo)  查詢紙本館藏   畢業系所 物理學系
論文名稱 外場下流體相分離的數值模擬
(Numerical Simulation of Phase Separation in Binary Fluids with an External Field)
相關論文
★ 黏彈介質中高分子之動力學★ 層狀液晶缺陷結構之彈性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 外場下相變的動力學在過去十年中已經被廣泛地研究。在這個研究工作中,我們執行數值模擬來研究在均勻電場下的流體相分離現象。當流體歷經相分離時會變為非均質材料,它的介電常數會隨著區域的濃度改變。因此電場能夠影響系統的圖案形成。在我們的模擬中所用的動力學模型遵循著H模型,並且在Ginzburg-Landau自由能中額外加入一個由電場引發的項。分離的相會被排列形成圖案,在其中界面的法向量都垂直於電場。這個系統初期階段的動力學將透過線性分析與雙淬火過程來研究。
摘要(英) The dynamics of phase transitions with an external field is studied extensively in the last decade. In this work, we perform numerical simulations to study the phase separation in binary fluids with a uniform electric field. The binary fluid is inhomogeneous while it undergoes the phase separation, and its dielectric constant varies with the local composition. Therefore the electric field would affect the pattern formation of the system. The dynamic model in our simulation follows the model H with an additional term in the Ginzburg-Landau free energy, which is induced by the electric field. The separated phases are arranged to form patterns where the normal vector of interfaces is perpendicular to the field. The dynamics of this system in the early stage is investigated through the linear analysis and the biquenching process.
關鍵字(中) ★ 外加場
★ 相分離
關鍵字(英) ★ phase separation
★ external field
論文目次 1. Introduction......1
2. Dynamics of Phase Separation......4
2.1. The Cahn-Hilliard Equation......4
2.2. Hydrodynamic Flow......6
2.3. Growth Laws......7
2.4. Free Energy Under the External Electric Field......8
2.4.1. Thermodynamic Relations......8
2.4.2. Fixed Potential......9
2.5. Equations of Motion......11
2.5.1. Chemical Potential Correction......11
2.5.2. The Ginzburg-Landau Equation......11
2.5.3. Electric Forces in a Fluid Dielectric......12
3. Numerical Simulation......14
3.1 Methods......14
3.1.1. Numerical Scheme Using the Fourier Transform......14
3.1.2. Integration of Time Evolution Equation......15
3.1.3. Initial and Boundary Conditions......16
3.2. Two-dimensional Simulations......17
3.3. Three-dimensional Simulations......22
4. Analyses and Discussion......24
4.1. Linear Analysis......24
4.2. Growth Rate......27
4.3. Coarsening Mechanism in an Electric Field......31
5. Conclusions......39
A. Non-dimensionalizng of the Ginzburg-Landau Equation......41
參考文獻 [1] S. Katz, J. Lebowitz, and H. Spohn, Phy. Rev. B 28, 1655 (1983).
[2] S. W. Sides, P. A. Rikvold, and M. A. Novotny, Phys. Rev. Lett. 81, 834 (1998).
[3] M. F. Zimmer, Phys. Rev. E 47, 3950 (1993).
[4] G. Korniss, C. J. White, P. A. Rikvold, and M. A. Novotny, Phys. Rev. E 63, 016120 (2000).
[5] J. Richardi, D. Ingert, and M. P. Pileni, Phys. Rev. E 66, 046306 (2002).
[6] J. Dzubiella, G. P. Holfmann, and H. Löwen, Phys. Rev. E 65, 021402 (2002).
[7] T. Taniguchi, K. Sato, and M. Doi, AIP Conference Proceedings 519, 581 (1999).
[8] A. Onuki, Physica A 217, 38 (1995).
[9] A. Onuki, Europhys. Lett. 29, 611-616 (1995).
[10] A. Onuki, "Electric Field Effects Near Critical Points", in NATO series Nonlinear Dielectric Phenomena in Complex Liquids (Kluwer, 2003).
[11] J. D. Gunton, M. S. Miguel, and P. S. Sahni, in Phase Transitions and Critical Phenomena, Vol. 8, edited by C. Domb and J. L. Lebowitz (New York: Academic Press, 1983).
[12] A. J. Bray, "Coarsening Dynamics of Nonequilibrium Phase Transitions", in Soft and Fragile Matter: Nonequilibrium Dynamics, Metastability and Flow, edited by M. E. Cates and M. R. Evans (2000).
[13] M. Doi, "Dynamics of Domains and Textures", in Theoretical Challenges in the Dynamics of Complex Fluids, edited by T. Mcleish, (Kluwer, 1997).
[14] J. W. Cahn, J. Chem. Phys. 42, 93 (1965).
[15] T. Koga and K. Kawasaki, Phys. Rev. A 44, R817 (1991).
[16] E. D. Siggia, Phys. Rev. A 20, 595 (1979).
[17] M. S. Miguel, M. Grant, and J. D. Gunton, Phys. Rev. A 31, 1001 (1985).
[18] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd ed. (Butterworth-Heinemann Ltd, 1995).
[19] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University Press, 1994).
[20] D. Kincaid and W. Cheney, Numerical Analysis, 2nd ed. (Brooks/Cole, 1996).
指導教授 陸駿逸(Chun-Yi Lu) 審核日期 2004-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明