博碩士論文 91242002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:3.139.239.157
姓名 曲宏宇(Hong-Yu Chu)  查詢紙本館藏   畢業系所 物理學系
論文名稱 微粒電漿中電漿微泡的生成與交互作用之動力行為研究
(The formation and interactions of plasma bubbles in dusty plasma liquids)
相關論文
★ 二加一維鏈狀微粒電漿液體微觀運動與結構之實驗研究★ 剪力下的庫倫流體微觀黏彈性反應
★ 強耦合微粒電漿中的結構與動力行為研究★ 脈衝雷射誘發之雷漿塵爆
★ 強耦合微粒電漿中脈衝雷射引發電漿微泡★ 二維強耦合微粒電漿方向序的時空尺度律
★ 二維微粒庫倫液體中集體激發微觀動力研究★ 超薄二維庫侖液體的整齊行為
★ 超薄二維微粒電漿庫侖流的微觀運動行為★ 微米狹縫中之脈衝雷射誘發二維氣泡相互作用
★ 介觀微粒庫倫液體之流變學★ 二維神經網路系統之集體發火動力學行為
★ 大白鼠腦皮質層神經元網路之同步發放行為研究★ 二維團簇腦神經網路之同步發火
★ 二維微粒電漿液體微觀結構之記憶行為★ 脈衝雷射誘發雙氣泡間薄液層之不穩定性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氣泡在生活中處處可見,而不同產生的機制與其交互作用下的現象均為有趣及有挑戰性的研究話題。如脈衝雷射在水中產生氣泡的方式為一有趣的研究課題,其在雷射醫療中扮演極重要的作用方式。另外微粒電漿液體在近十年內被各國的研究團隊拿來作為模擬液體反應的
系統,如可研究脈衝波,固液體相變,及液體黏彈性的各種特性。故在此論文中試著以脈衝雷射在微粒電漿液體中產生電漿微泡作為研究課題。因微粒電漿為一非線性與多複雜性的系統,故在不同時間尺度下表現不同的動力行為。此論文中將對於不同時間尺度與不同背景壓力下做一系列的探討,包含於10-9~10-6 秒內脈衝雷射誘發微粒爆炸的膨脹行為,10-6~10-3 秒內周圍微粒的膨脹過程,10-3 後微粒空腔形成在不同壓力下由於離子與電子在電漿環境下表現各種不同現象。接著於論文內也討論了,電漿微泡與微粒波間的交互作用,以及微泡與微泡間不同方向性的交互作用。在本論文最後更討論以一方法引入微粒來量測在低壓力下的黏滯係數以及發現微粒庫倫電漿團下可改變電漿鞘的分佈情形。
摘要(英) Gas bubbles are observed in our daily life, which are generated through self-organization or external drives. One of the techniques generating bubble in liquid is through the vaporization of liquid by the intense laser pulse. It provides many applications in laser surgery and molecular and cellular biophysics.
On the other hand, the dusty plasma system is a weakly ionized plasma containing many micron-size dust particles. Through Coulomb interaction
and charging process, the massive dust grains are strongly coupled with the background plasma. It provides a platform to investigate the Mach
cone structure, the solid-liquid transition, viscoelastic property microscopically in the strongly coupled Coulomb liquid system. As the gas bubble generated in the liquid through the laser-liquid interaction, the plasma bubble can be generated in the dusty plasma liquid by the
intense laser pulse. It is found that the plasma bubble, a localized structure, sustains its shape and travels downward in the dusty plasma liquid. Hence, It brings out several interesting issues at different time scales. In this thesis,
the expansion of the spherical plume is compared with the shock wave model at nsec to ¹sec. The dust particles are pushed by the outward ion
flow associated with the plume and the plasma bubble is formed at usec to msec. After msec, the plasma bubble travels downward associated with a surrounding dipole-like dust flow field at suitable background condition. It is also found that there is a strong interaction between two vertically aligned plasma bubbles. The formation of the wave induced bubble suggests that the spherical void is an extreme case of the dust density wave with large amplitude. In the last part of this thesis, the observation of the dust cluster changing the sheath potential well is shortly discussed.
關鍵字(中) ★ 電漿鞘
★ 電漿微泡
★ 雷射
★ 微粒電漿
關鍵字(英) ★ sheath
★ plasma bubble
★ dusty plasma
★ laser
論文目次 1 Introduction 1
2 Background 6
2.1 Breakdown of gases in fields of various frequency ranges . . . . 6
2.2 Dusty plasma system . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 RF glow discharge . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Dusty plasma crystals and liquids . . . . . . . . . . . . 10
2.3 Laser ablation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Interaction of intense laser pulse and extensive media . 12
2.3.2 Optical breakdowns of nanoparticles and microdroplets
by intense laser pulse . . . . . . . . . . . . . . . . . . . 15
2.3.3 Strong explosions in air . . . . . . . . . . . . . . . . . . 16
2.4 Bubble formation . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Waves in plasma . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Bubble generated by pulsed laser in plasma . . . . . . 19
3 Experiment 21
3.1 Plasma bubbles formation and inteaction . . . . . . . . . . . 21
3.1.1 Experimental setup . . . . . . . . . . . . . . . . . . . . 21
3.1.2 CCD measurement . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Langmuir probe measurement . . . . . . . . . . . . . . 24
3.2 Probing the dusty plasma sheath profile . . . . . . . . . . . . 25
3.2.1 setup and measurement . . . . . . . . . . . . . . . . . 25
4 Result and Discussion 26
4.1 Formation of the plasma bubbles from nsec to ¹sec . . . . . . 27
4.1.1 Plume expansion from gated ICCD measurement . . . 29
4.1.2 Plume measurement from Langmiur probe . . . . . . . 32
4.2 Dynamics of single plasma bubble from ¹sec to msec . . . . . 36
4.2.1 Dust cavity expansion from gated ICCD measurement 36
4.2.2 Typical properties of plasma bubble . . . . . . . . . . . 40
4.2.3 Interactions of plasma bubbles and dust density wave . 45
4.3 Interactions of multiple plasma bubbles after msec . . . . . . . 51
4.3.1 Horizontal interactions of plasma bubbles . . . . . . . . 51
4.3.2 Vertical interactions of plasma bubbles . . . . . . . . . 55
4.4 Probing the dusty plasma sheath . . . . . . . . . . . . . . . . 58
4.4.1 Measurement of the viscosity coefficient of argon gas . 59
4.4.2 Sheaths in dust-free plasma and dusty plasma . . . . . 61
5 Conclusion 69
參考文獻 [1] Alfred Vogel etal. Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation. PRL., 88, 2002.
[2] Ohan Baghdassarian et al. Liminescence characteristics of laser-induced
bubbles in water. PRL., 83, 1999.
[3] Ohan Baghdassarian et al. Spectrum of luminescence from laser-created
bubbles in water. PRL., 86, 2001.
[4] V. Nosenko and et al. Decharging of complex plasmas: First kinetic
observations. PRL., 88, 2002.
[5] Lin I et al. Direct observation of coulomb crystals and liquids in strongly
coupled rf dusty plasmas. PRL., 72, 1994.
[6] N.N. Rao et al. Effect of dust charge inhomogeneity on linear and nonlinear
dust-acoustic wave-propagation. PHYSICS OF PLASMAS, 6,1999.
[7] N.N. Rao et al. Adiabatic dust-acoustic solitons. PHYSICS LETTERS
A, 235, 1997.
[8] J. C. Miller et al. Laser ablation. Springer-Verlag, 1994.
[9] Walter W. Duley et al. Laser processing and analysis of materials. John
Wiley and Sons, New York, 1983.
[10] David B. Geohegan. Fast intensified-ccd photography of yba2cu307-x
laser ablation in vacuum and ambient oxygen. APL., 60, 1992.
[11] Hong-Yu Chu and et al. Observation of laser-pulse-induced traveling
microbubbles in dusty plasma liquids. PRL., 90, 2003.
[12] G. E. Morfill etal. Condensed plasmas under microgravity. PRL., 83,
1999.
[13] J. Goree etal. Instabilities in a dusty plasma with ion drag and ionization. PRE., 59, 1999.
[14] Yuri P. Raizer. Gas discharge physics. Berlin New York Springer-Verlag,
1991.
[15] B. Chapman. Glow discharge processes. John Wiley and Sons, New
York, 1980.
[16] Lin I et al. Microscopic particle motions in strongly coupled dusty plasmas. Science, 272, 1996.
[17] Chi-Hui Chiang and Lin I. Cooperative particle motions and dynamical
behaviors of free dislocations in strongly coupled quasi-2d dusty plasmas.
PRL., 77, 1996.
[18] G. Morfill and et al. Charge fluctuation instability of the dust lattice
wave. PRL., 83, 1999.
[19] A. V. Ivlev and et al. Decharging of complex plasmas: First kinetic
observations. PRL., 90, 2003.
[20] Lee-Wen Teng and et al. Microscopic observation of confinementinduced
layering and slow dynamics of dusty-plasma liquids in narrow channels. PRL., 90, 2003.
[21] Bin Liu and J. Goree. Shear viscosity of two-dimensional yukawa systems
in the liquid state. PRL., 94, 2005.
[22] Chia-Ling Chan and et al. Shear banding in mesoscopic dusty plasma
liquids. PRL., 93, 2004.
[23] Gregor E. and et al. Highly resolved fluid flows: ’liquid plasmas’ at the kinetic level. PRL., 92, 2004.
[24] Riju C. Issac et al. Twin peak distribution of electron emmission profile
and impact ionization of ambient molecules during laser ablation of silver target. ARL., 73, 1998.
[25] David B. Geohegan et al. Dynamics of laser ablation plume penetration
through low pressure background gases. ARL., 67, 1995.
[26] E. T. Gumbrell and et al. Intense laser interactions with sprays of
submicron droplets. Physics of plasma, 8, 2001.
[27] L. C. Mountford and et al. Characterization of a sub-micron liquid spray
for laser-plasma x-ray generation. Review of scientific instruments, 69,1998.
[28] M. Lezius and et al. Explosion dynamics of rare gas clusters in strong
laser fields. PRL., 80, 1998.
[29] D. R. Symes and et al. Fast-ion production from short-pulse irradiation
of ethanol microdroplets. PRL., 93, 2004.
[30] IAkov Borisovich. Physics of shock waves and high-temperature hydrodynamic
phenomena. Mineola, N.Y. : Dover Publications, 1991.
指導教授 伊林(Lin I) 審核日期 2006-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明