博碩士論文 92222011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:110 、訪客IP:18.223.239.250
姓名 廖宜鴻(Yi-Hung Liao)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(AFM Studies on Phospholipid Bilayers)
相關論文
★ 用氘核磁共振儀研究含高濃度麥角脂醇的DPPC人造膜之分子交交互作用★ Fluorescence study of lipid membranes containing sterol
★ 含固醇的脂質雙層膜的形態及相行為的研究★ The effects of composition and thermal history on the properties of supported lipid bilayers
★ The effect of sterol on the POPE/DPPC membranes★ 麥角固醇對含膽固醇的脂雙層膜的影響
★ Deuterium NMR Study of the Effect of Stigmasterol on POPE Membranes★ Deuterium NMR Study of the effect of 7- dehydrocholesterol on the POPE Membranes
★ 運用氘核磁共振儀研究POPC/cholesterol膜之物理性質★ 模型細胞膜(含有相同碳鏈的PC/PE)存在或缺乏固醇類的物理性質
★ 運用氘核磁共振研究DPPC/POPE/sterol人造細胞膜之物理性質★ Phase Behavior and Molecular Interactions of Membranes Containing Phosphatidylcholines and Sterol: A Deuterium NMR Study
★ The physical properties of phytosterol-containing lipid bilayers★ An AFM Study on Supported Lipid Bilayers with and without Sterol
★ β-谷固醇對POPE膜物理特性的影響★ 固醇結構對PC膜物理特性的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們使用原子力顯微鏡研究室溫下DPPC,POPC,及POPC/DPPC膜的形貌。這些膜是以雲母片為支撐基板的脂質雙層 (supported lipid bilayers)。我們比較以旋轉塗佈方法 (spin coating) 及脂球融合方法 (vesicle fusion) 製作的脂質雙層。這兩種方法製造的脂質雙層有相似的厚度,但旋轉塗佈方法可得到較一致的脂質覆蓋率。POPC (一種低熔點的脂質,Tm = -7 oC) 膜因其液態特性而呈現較DPPC (一種高熔點的脂質,Tm = 40 oC) 膜均勻的形貌,以及較小的脂質雙層厚度。我們也得到POPC/DPPC混和脂膜的形貌與DPPC濃度的關係圖,其中我們觀察到脂質不互溶性 (lipid immiscibility)。對脂質雙層厚度分析的結果暗示“富含POPC區塊”(POPC-rich domains)與“富含DPPC區塊”(DPPC-rich domains)共存。加入愈多DPPC會增加較厚之脂質雙層(即富含DPPC區塊)的比例,因此造成POPC/DPPC混和脂膜有較大的脂質雙層平均厚度。
摘要(英) We have studied the morphologies of DPPC, POPC, and POPC/DPPC membranes at room temperature using atomic force microscopy (AFM). The membranes were lipid bilayers supported on mica surfaces. Lipid bilayers prepared by spin coating and vesicle fusion were compared. Both methods produce bilayers of similar thickness. However, spin coating results in more uniform lipid coverage. Because of the fluid nature of the bilayers, POPC (a low-melting lipid with Tm of -7 oC) present a more homogeneous morphology and a smaller bilayer thickness than DPPC (a high-melting lipid with Tm of 40 oC). The morphologies of binary mixtures of POPC and DPPC were obtained as a function of DPPC concentration. Lipid immiscibility is observed. Analysis of bilayer thickness suggests coexistence of POPC-rich and DPPC-rich domains. Addition of DPPC increases the fraction of the thicker-bilayer (i.e. DPPC-rich) domains, thus increase the average bilayer thickness of POPC/DPPC bilayers.
關鍵字(中) ★ 磷脂雙層 關鍵字(英) ★ Hydration
★ Lipid bilayer
★ Vesicle fusion
★ Spin coating
論文目次 Chapter 1 Introduction 1
1.1 Structure of Lipid Membrane 2
1.2 Model Membrane 5
Chapter 2 Materials and Method 8
2.1 Vesicle Fusion Method 8
2.1.1 Materials for Vesicle Fusion Method 8
2.1.2 Multilamellar Vesicles (MLVs) 9
2.1.3 Large Unilamellar Vesicles (LUVs) 9
2.1.4 Supported lipid Membrane 9
2.2 Spin Coating Method 10
2.2.1 Materials for Spin Coating 10
2.2.2 Spin Coating 10
2.3 Atomic Force Microscopy 11
2.3.1 Working Principles of AFM 12
2.3.2 AFM Operation Modes 13
2.3.3 Atomic Force Microscope and Tips 14
2.4 Data Processing and Analysis 15
2.4.1 Data Processing 15
2.4.2 Data Analysis 15
Chapter 3 Results and Discussions 16
3.1 Comparison of DPPC Membrane by Spin Coating and Vesicle
Fusion 16
3.2 POPC Membranes by Spin Coating 19
3.3 Hydration of Spin-Coated POPC Membrane 21
3.4 POPC/DPPC Mixture Membranes 25
Chapter 4 Conclusions 30
References 32
參考文獻 [1] Brown, D.A. and London, E., (1998). Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol. 14, 111-136.
[2] Simons, K. and Ikonen, E., (1997). Functional rafts in cell membranes. Nature 387, 569-572.
[3] Brown, R.E., (1998). Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci. 111, 1-9.
[4] Brown, D.A. and London, E., (2000). Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275, 17221-17224.
[5] Johannsson, A., C.A. Keightley, G.A. Smith, C.D. Richards, T.R. Hesketh, J.C. Metcalfe. 1981. The effect of bilayer thickness and n-alkanes on the activity of the (Ca2+ + Mg2+)-dependent ATPase of sarcoplasmic reticulum. J. Biol. Chem. 256, 1643-1650.
[6] B.M. Hendry, J.R. Elliott, D.A. Haydon. 1985. Further evidence that membrane thickness influences voltage-gated sodium channels. Biophys. J. 47: 841-845.
[7] Weber, M. E., Schlesinger, P. H., Gokel, G. W. 2005. Dynamic assessment of bilayer thickness by varying phospholipid and hydraphile synthetic channel chain lengths. J. Am. Chem. Soc. 127(2):636-42.
[8] Yuan, C., O’Connell, R.J., Feinberg-Zadek, P.L., Johnston, L.J., and Treistman, S.N. 2004. Bilayer thickness modulates the conductance of the BK channel in model membranes. Biophys. J. 86: 3620–3633.
[9] Hui, S. W., R. Viswanathan, J. A. Zasadzinski, and J. N. Israelachvili. 1995. The structure and stability of phospholipid bilayers by atomic force microscopy. Biophys. J. 68:171-178
[10] Burns, A. R. Domain Structure in Model Membrane Bilayers Investigated by
32
Simultaneous Atomic Force Microscopy and Fluorescence Imaging. Langmuir, 19 (20), 8358 -8363, 2003.
[11] Yuan, C. and L. J. Johnston. Atomic force microscopy studies of ganglioside GM1 domains in phosphatidylcholine and phosphatidylcholine/cholesterol bilayers. Biophys J. 2001 August; 81(2): 1059–1069.
[12] Tokumasu F., A. J. Jin, and J. A. Dvorak. 2002. Lipid membrane phase behaviour elucidated in real time by controlled environment atomic force microscopy. J. Electron Microsc. (Tokyo), 51, 1 – 9.
[13] Menke M., S. Kunneke, A. Janshoff. 2002. Lateral organization of GM1 in phase-separated monolayers visualized by scanning force microscopy. European Biophysics Journal, 31, 4, 317-322
[14] Yuan C. and L. J. Johnston. 2002. Phase evolution in cholesterol/DPPC monolayers: atomic force microscopy and near field scanning optical microscopy studies. Journal of Microscopy. 205 (2), 136–146.
[15] R.D.S. Pereira. Atomic force microscopy as a novel pharmacological tool. Biochemical Pharmacology, 62 (2001), 975-983.
[16] Allen S., M.C. Davies, C.J. Roberts, S.J.B. Tendler, P.M. Williams. Atomic force microscopy in analytical biotechnology. Trends in Biotechnology, 15 (1997), 3, 101-105.
[17] Dufrene Y. F. Atomic force microscopy, a powerful tool in microbiology. J. Bacteriol., 184 (2002) 5205 – 5213.
[18] Czajkowsky D. M., H. Iwamoto, and Z. Shao. Atomic force microscopy in structural biology: from the subcellular to the submolecular. J. Electron Microsc. (Tokyo), 49 (2000) 395 – 406.
[19] Crowe, J. H., F. A. Hoekstra, and L. M. Crowe. 1992. Anhydrobiosis. Annu. Rev. Physiol. 54:579–599.
33
[20] Crowe,, J. H., L. M. Crowe, J. F. Carpenter, and C. A. Wistrom. 1987. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem. J. 242:1–10.
[21] Hoekstra FA, Crowe JH, Crowe LM. 1992. Germination and ion leakage are linked with phase transitions of membrane lipids during imbibition of Typha latifolia pollen. Physiol Plant. 84:29–34.
[22] Senaratna, T., B. D. McKersie. 1983. Dehydration injury in germinating soybean (Glycine max L. Merr.) seeds. Plant Physiol. 72: 620-624.
[23] Crowe, J. H., F. A. Hoekstra, and L. M. Crowe. 1989. Membrane Phase Transitions are Responsible for Imbibitional Damage in Dry Pollen. PNAS 86: 520-523.
[24] Hoekstra, F. A. 1984. Imbibitional Chilling Injury in Pollen: Involvement of the Respiratory Chain. Plant Physiol. 74, 815-821.
[25] McKersie, B. D. and R. H. Stinson. 1980. Effect of Dehydration on Leakage and Membrane Structure in Lotus corniculatus L. Seeds. Plant Physiol. 66(2): 316–320.
[26] Crowe, J. H., F. A. Hoekstra, and L. M. Crowe. 1989. Membrane Phase Transitions are Responsible for Imbibitional Damage in Dry Pollen. PNAS 86: 520-523.
[27] Singer, S. J. and Nicolson, G. L., (1972). The fluid mosaic model of the structure of cell membranes. Science 175, 720-31.
[28] Groves, J. T.; Boxer, S. G. Electric-Field-Induced Concentration Gradients in Planar Supported Bilayers. Biophys. J. 1995, 69, 1972-1975.
[29] Gorter, A. E., and Grendel, F., (1925). On Biomolecular Layers of Lipid on the Cromacytes of the Blood. J. Exp. Med. 41, 439-443.
[30] Simonsen, A. C., and L. A. Bagatolli. 2004. Structure of spin-coated lipid films
34
and domain formation in supported membranes formed by hydration. Langmuir. 20:9720–9728.
[31] Pompeo, M. Girasole, A. Cricenti, F. Cattaruzza, A. Flamini, T. Prosperi, J. Generosi, A. Congiu Castellano. (2005). AFM characterization of solid-supported lipid multilayers prepared by spin-coating. Biochimica et Biophysica Acta. 1712, 29-36.
[32] Reviakine, I. and Brisson, A. (2000). Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy. Langmuir 16:1806–1815.
[33] Johnson, J. M., H. Taekijp, S. Chu, and S. G. Boxer. 2002. Early steps of supported bilayer formation probed by single vesicle fluorescence assays. Biophys. J. 83:3371–3379.
[34] Flack, W. W.; Soong, D. S.; Bell, A. T.; Hess, D. W. 1984. A mathematical model for spin coating of polymer resists. J. Appl. Phys. 56, 1199-1206.
[35] Mennicke, U.; Salditt, T. Preparation of Solid-Supported Lipid Bilayers by Spin-Coating. Langmuir 2002, 18, 8172-8177.
[36] Bernhard W, Hoffmann S, Dombrowsky H, Rau GA, Kamlage A, Kappler M, Haitsma JJ, Freihorst J, von der Hardt H., and Poets CF. Phosphatidylcholine molecular species in lung surfactant: composition in relation to respiratory rate and lung development. Am J Respir Cell Mol Biol. 25, 725–731, 2001.[
[37] Yeagle, P. 1992. The Structure of Biological Membranes. CRC Press, Boca Raton.
[38] Veldhuizen, R., K. Nag, S. Orgeig, and F. Possmayer. 1998. The role of lipids in pulmonary surfactant. Biochim. Biophys. Acta. 1408:90–108.
[39] Künnecke, S., D. Krüger, and A. Janshoff. 2004. Scrutiny of the failure of lipid membranes as a function of headgroups, chain length, and lamellarity measured
35
by scanning force microscopy. Biophys. J. 86:1545–1553.
[40] Glabe, C. G. 1985. Interaction of the Sperm Adhesive Protein, Bindin, with Phospholipid Vesicles. I. Specific Association of Bindin with Gel-Phase Phospholipid Vesicles. The Journal of Cell Biology. Vol.100, 3:794-799.
[41] Ranck, J. L., L. Mateu, D. M. Sadler, A. Tardieu, T. Gulik-Krzywicki, And V. Luzzati. 1974. Order-disorder conformational transitions of the hydrocarbon chains of lipids. J. Mol. Biol. 85:249.
[42] Levine, Y. K. 1973. X-ray diffraction studies of membranes. Prog. Surf. Sci. 3:279.
[43] Mansour, H. M. and G. Zografi. (2007). The relationship between water vapor absorption and desorption by phospholipids and bilayer phase transitions. J. Pharm. Sci. 96:377–396.
[44] Binder, H. and K. Gawrisch. 2001. Dehydration Induces Lateral Expansion of Polyunsaturated 18:0–22:6 Phosphatidylcholine in a New Lamellar Phase. Biophys. J., August 1, 81: 969 – 982.
[45] Tamm, L. K., and H. M. McConnell. 1985. Supported phospholipid bilayers. Biophys. J. 47:105–113.
[46] Schönherr, H., Johnson, J. M., Lenz, P., Frank, C. W., and Boxer, S. G., (2004). Vesicle adsorption and lipid bilayer formation on glass studied by atomic force microscopy. Langmuir. 20,11600–11606.
[47] Jenkins, A. T. A.; Hu, J.; Wang, Y. Z.; Schiller, S.; Fo¨rch, R.; Knoll, W. Pulsed plasma deposited maleic anhydride thin films as supports for lipid bilayers. Langmuir 2000, 16, 6381-6384.
[48] Mou, J. X.; Yang, J.; Shao, Z. F. Atomic-Force Microscopy of Cholera-Toxin B-Oligomers Bound to Bilayers of Biologically Relevant Lipids. J. Mol. Biol. 1995, 5, 507-512.
36
[49] Bustamante, C. and Keller, D., (1995). Scanning force microscopy in biology. Phys. Today. 48, 32–38.
[50] Kasas, S., Thomson N. H.; Smith B. L.; Hansma P. K.; Miklossy J. and Hansma H. G., (1997). Biological applications of the AFM: from single molecules to organs. Int. J. Imaging Systems and Technology. 8, 151-161.
[51] Alessandrini, A. and Facci, P., (2005). AFM: a versatile tool in biophysics. Measurement Science & Technology 16, R65-R92.
[52] Binning, G., Quate, C. F., and Gerber, C. H., (1986). Atomic Force Microscope. Phys. Rev. Lett. 56, 930–933. Hoh, J. H. and Hansma, P. K., (1992). Atomic force microscopy for high resolution imaging in cell biology. Trends Cell Biol. 2, 208–13.
[53] Henderson, E. R., (1994). Imaging living cells by atomic force microscopy. Prog. Surf. Sci. 46, 39–60.
[54] Muller-Buschbaum, P. Dewetting and pattern formation in thin polymer films as investigated in real and reciprocal space. J. Phys.: Condens. Matter. 2003, 15, R1549-R1582.
[55] Pande, A. H., S. Quin, and S. A. Tatulian. 2005. Membrane fluidity is a key modulator of membrane binding, insertion, and activity of 5-lipoxygenase. Biophys. J. 88:4084–4094.
[56] Wennerström, H. and Sparr, E. 2003. Thermodynamics of membrane lipid hydration. Pure Appl. Chem. 75 (7), 905–912.
[57] Oborina, E. M. and M. C. Yappert. 2003. Effect of sphingomyelin versus dipalmitoylphosphatidylcholine on the extent of lipid oxidation. Chemistry and Physics of Lipids. 123 (2), 223-232.
[58] Borst, J. W., N. V. Visser, O. Kouptsova, A. J. Visser. 2005. Oxidation of unsaturated phospholipids in membrane bilayer mixtures is accompanied by
37
membrane fluidity changes. Biochim Biophys Acta. 1487(1), 61-73.
[59] White, S. H., R. E. Jacobs, and G. I. King. 1987. Partial specific volumes of lipid and water in mixtures ofegg lecithin and water. Biophys. J. 52, 663-665.
[60] Curatolo W, Sears B, Neuringer LJ. 1985. A calorimetry and deuterium NMR study of mixed model membranes of 1-palmitoyl-2-oleylphosphatidylcholine and saturated phosphatidylcholines. Biochim Biophys Acta. 817(2), 261-70.
指導教授 薛雅薇(Ya-Wei Hsueh) 審核日期 2007-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明