參考文獻 |
[1] Brown, D.A. and London, E., (1998). Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol. 14, 111-136.
[2] Simons, K. and Ikonen, E., (1997). Functional rafts in cell membranes. Nature 387, 569-572.
[3] Brown, R.E., (1998). Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci. 111, 1-9.
[4] Brown, D.A. and London, E., (2000). Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275, 17221-17224.
[5] Johannsson, A., C.A. Keightley, G.A. Smith, C.D. Richards, T.R. Hesketh, J.C. Metcalfe. 1981. The effect of bilayer thickness and n-alkanes on the activity of the (Ca2+ + Mg2+)-dependent ATPase of sarcoplasmic reticulum. J. Biol. Chem. 256, 1643-1650.
[6] B.M. Hendry, J.R. Elliott, D.A. Haydon. 1985. Further evidence that membrane thickness influences voltage-gated sodium channels. Biophys. J. 47: 841-845.
[7] Weber, M. E., Schlesinger, P. H., Gokel, G. W. 2005. Dynamic assessment of bilayer thickness by varying phospholipid and hydraphile synthetic channel chain lengths. J. Am. Chem. Soc. 127(2):636-42.
[8] Yuan, C., O’Connell, R.J., Feinberg-Zadek, P.L., Johnston, L.J., and Treistman, S.N. 2004. Bilayer thickness modulates the conductance of the BK channel in model membranes. Biophys. J. 86: 3620–3633.
[9] Hui, S. W., R. Viswanathan, J. A. Zasadzinski, and J. N. Israelachvili. 1995. The structure and stability of phospholipid bilayers by atomic force microscopy. Biophys. J. 68:171-178
[10] Burns, A. R. Domain Structure in Model Membrane Bilayers Investigated by
32
Simultaneous Atomic Force Microscopy and Fluorescence Imaging. Langmuir, 19 (20), 8358 -8363, 2003.
[11] Yuan, C. and L. J. Johnston. Atomic force microscopy studies of ganglioside GM1 domains in phosphatidylcholine and phosphatidylcholine/cholesterol bilayers. Biophys J. 2001 August; 81(2): 1059–1069.
[12] Tokumasu F., A. J. Jin, and J. A. Dvorak. 2002. Lipid membrane phase behaviour elucidated in real time by controlled environment atomic force microscopy. J. Electron Microsc. (Tokyo), 51, 1 – 9.
[13] Menke M., S. Kunneke, A. Janshoff. 2002. Lateral organization of GM1 in phase-separated monolayers visualized by scanning force microscopy. European Biophysics Journal, 31, 4, 317-322
[14] Yuan C. and L. J. Johnston. 2002. Phase evolution in cholesterol/DPPC monolayers: atomic force microscopy and near field scanning optical microscopy studies. Journal of Microscopy. 205 (2), 136–146.
[15] R.D.S. Pereira. Atomic force microscopy as a novel pharmacological tool. Biochemical Pharmacology, 62 (2001), 975-983.
[16] Allen S., M.C. Davies, C.J. Roberts, S.J.B. Tendler, P.M. Williams. Atomic force microscopy in analytical biotechnology. Trends in Biotechnology, 15 (1997), 3, 101-105.
[17] Dufrene Y. F. Atomic force microscopy, a powerful tool in microbiology. J. Bacteriol., 184 (2002) 5205 – 5213.
[18] Czajkowsky D. M., H. Iwamoto, and Z. Shao. Atomic force microscopy in structural biology: from the subcellular to the submolecular. J. Electron Microsc. (Tokyo), 49 (2000) 395 – 406.
[19] Crowe, J. H., F. A. Hoekstra, and L. M. Crowe. 1992. Anhydrobiosis. Annu. Rev. Physiol. 54:579–599.
33
[20] Crowe,, J. H., L. M. Crowe, J. F. Carpenter, and C. A. Wistrom. 1987. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem. J. 242:1–10.
[21] Hoekstra FA, Crowe JH, Crowe LM. 1992. Germination and ion leakage are linked with phase transitions of membrane lipids during imbibition of Typha latifolia pollen. Physiol Plant. 84:29–34.
[22] Senaratna, T., B. D. McKersie. 1983. Dehydration injury in germinating soybean (Glycine max L. Merr.) seeds. Plant Physiol. 72: 620-624.
[23] Crowe, J. H., F. A. Hoekstra, and L. M. Crowe. 1989. Membrane Phase Transitions are Responsible for Imbibitional Damage in Dry Pollen. PNAS 86: 520-523.
[24] Hoekstra, F. A. 1984. Imbibitional Chilling Injury in Pollen: Involvement of the Respiratory Chain. Plant Physiol. 74, 815-821.
[25] McKersie, B. D. and R. H. Stinson. 1980. Effect of Dehydration on Leakage and Membrane Structure in Lotus corniculatus L. Seeds. Plant Physiol. 66(2): 316–320.
[26] Crowe, J. H., F. A. Hoekstra, and L. M. Crowe. 1989. Membrane Phase Transitions are Responsible for Imbibitional Damage in Dry Pollen. PNAS 86: 520-523.
[27] Singer, S. J. and Nicolson, G. L., (1972). The fluid mosaic model of the structure of cell membranes. Science 175, 720-31.
[28] Groves, J. T.; Boxer, S. G. Electric-Field-Induced Concentration Gradients in Planar Supported Bilayers. Biophys. J. 1995, 69, 1972-1975.
[29] Gorter, A. E., and Grendel, F., (1925). On Biomolecular Layers of Lipid on the Cromacytes of the Blood. J. Exp. Med. 41, 439-443.
[30] Simonsen, A. C., and L. A. Bagatolli. 2004. Structure of spin-coated lipid films
34
and domain formation in supported membranes formed by hydration. Langmuir. 20:9720–9728.
[31] Pompeo, M. Girasole, A. Cricenti, F. Cattaruzza, A. Flamini, T. Prosperi, J. Generosi, A. Congiu Castellano. (2005). AFM characterization of solid-supported lipid multilayers prepared by spin-coating. Biochimica et Biophysica Acta. 1712, 29-36.
[32] Reviakine, I. and Brisson, A. (2000). Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy. Langmuir 16:1806–1815.
[33] Johnson, J. M., H. Taekijp, S. Chu, and S. G. Boxer. 2002. Early steps of supported bilayer formation probed by single vesicle fluorescence assays. Biophys. J. 83:3371–3379.
[34] Flack, W. W.; Soong, D. S.; Bell, A. T.; Hess, D. W. 1984. A mathematical model for spin coating of polymer resists. J. Appl. Phys. 56, 1199-1206.
[35] Mennicke, U.; Salditt, T. Preparation of Solid-Supported Lipid Bilayers by Spin-Coating. Langmuir 2002, 18, 8172-8177.
[36] Bernhard W, Hoffmann S, Dombrowsky H, Rau GA, Kamlage A, Kappler M, Haitsma JJ, Freihorst J, von der Hardt H., and Poets CF. Phosphatidylcholine molecular species in lung surfactant: composition in relation to respiratory rate and lung development. Am J Respir Cell Mol Biol. 25, 725–731, 2001.[
[37] Yeagle, P. 1992. The Structure of Biological Membranes. CRC Press, Boca Raton.
[38] Veldhuizen, R., K. Nag, S. Orgeig, and F. Possmayer. 1998. The role of lipids in pulmonary surfactant. Biochim. Biophys. Acta. 1408:90–108.
[39] Künnecke, S., D. Krüger, and A. Janshoff. 2004. Scrutiny of the failure of lipid membranes as a function of headgroups, chain length, and lamellarity measured
35
by scanning force microscopy. Biophys. J. 86:1545–1553.
[40] Glabe, C. G. 1985. Interaction of the Sperm Adhesive Protein, Bindin, with Phospholipid Vesicles. I. Specific Association of Bindin with Gel-Phase Phospholipid Vesicles. The Journal of Cell Biology. Vol.100, 3:794-799.
[41] Ranck, J. L., L. Mateu, D. M. Sadler, A. Tardieu, T. Gulik-Krzywicki, And V. Luzzati. 1974. Order-disorder conformational transitions of the hydrocarbon chains of lipids. J. Mol. Biol. 85:249.
[42] Levine, Y. K. 1973. X-ray diffraction studies of membranes. Prog. Surf. Sci. 3:279.
[43] Mansour, H. M. and G. Zografi. (2007). The relationship between water vapor absorption and desorption by phospholipids and bilayer phase transitions. J. Pharm. Sci. 96:377–396.
[44] Binder, H. and K. Gawrisch. 2001. Dehydration Induces Lateral Expansion of Polyunsaturated 18:0–22:6 Phosphatidylcholine in a New Lamellar Phase. Biophys. J., August 1, 81: 969 – 982.
[45] Tamm, L. K., and H. M. McConnell. 1985. Supported phospholipid bilayers. Biophys. J. 47:105–113.
[46] Schönherr, H., Johnson, J. M., Lenz, P., Frank, C. W., and Boxer, S. G., (2004). Vesicle adsorption and lipid bilayer formation on glass studied by atomic force microscopy. Langmuir. 20,11600–11606.
[47] Jenkins, A. T. A.; Hu, J.; Wang, Y. Z.; Schiller, S.; Fo¨rch, R.; Knoll, W. Pulsed plasma deposited maleic anhydride thin films as supports for lipid bilayers. Langmuir 2000, 16, 6381-6384.
[48] Mou, J. X.; Yang, J.; Shao, Z. F. Atomic-Force Microscopy of Cholera-Toxin B-Oligomers Bound to Bilayers of Biologically Relevant Lipids. J. Mol. Biol. 1995, 5, 507-512.
36
[49] Bustamante, C. and Keller, D., (1995). Scanning force microscopy in biology. Phys. Today. 48, 32–38.
[50] Kasas, S., Thomson N. H.; Smith B. L.; Hansma P. K.; Miklossy J. and Hansma H. G., (1997). Biological applications of the AFM: from single molecules to organs. Int. J. Imaging Systems and Technology. 8, 151-161.
[51] Alessandrini, A. and Facci, P., (2005). AFM: a versatile tool in biophysics. Measurement Science & Technology 16, R65-R92.
[52] Binning, G., Quate, C. F., and Gerber, C. H., (1986). Atomic Force Microscope. Phys. Rev. Lett. 56, 930–933. Hoh, J. H. and Hansma, P. K., (1992). Atomic force microscopy for high resolution imaging in cell biology. Trends Cell Biol. 2, 208–13.
[53] Henderson, E. R., (1994). Imaging living cells by atomic force microscopy. Prog. Surf. Sci. 46, 39–60.
[54] Muller-Buschbaum, P. Dewetting and pattern formation in thin polymer films as investigated in real and reciprocal space. J. Phys.: Condens. Matter. 2003, 15, R1549-R1582.
[55] Pande, A. H., S. Quin, and S. A. Tatulian. 2005. Membrane fluidity is a key modulator of membrane binding, insertion, and activity of 5-lipoxygenase. Biophys. J. 88:4084–4094.
[56] Wennerström, H. and Sparr, E. 2003. Thermodynamics of membrane lipid hydration. Pure Appl. Chem. 75 (7), 905–912.
[57] Oborina, E. M. and M. C. Yappert. 2003. Effect of sphingomyelin versus dipalmitoylphosphatidylcholine on the extent of lipid oxidation. Chemistry and Physics of Lipids. 123 (2), 223-232.
[58] Borst, J. W., N. V. Visser, O. Kouptsova, A. J. Visser. 2005. Oxidation of unsaturated phospholipids in membrane bilayer mixtures is accompanied by
37
membrane fluidity changes. Biochim Biophys Acta. 1487(1), 61-73.
[59] White, S. H., R. E. Jacobs, and G. I. King. 1987. Partial specific volumes of lipid and water in mixtures ofegg lecithin and water. Biophys. J. 52, 663-665.
[60] Curatolo W, Sears B, Neuringer LJ. 1985. A calorimetry and deuterium NMR study of mixed model membranes of 1-palmitoyl-2-oleylphosphatidylcholine and saturated phosphatidylcholines. Biochim Biophys Acta. 817(2), 261-70. |