摘要(英) |
The purpose of the study is to discuss the moderate anti-buckle spacing of SD790/690 rebar. This is because the present standard only specifies the spacing of transverse reinforcement for SD420 bars. Thus, the experiment used the universal testing machine with different bar slenderness ratio to simulate the column components subjected to earthquake loading.
Test specimens adopted 16mm and13mm diameter (common strength SD420 & high strength SD790). That is, SD690 bars normally used for larger diameter like D25 are not available to the testing machine at present. Therefore, SD790-D13 and SD420-D13 bars with different slenderness(s/db =5.5、6) and different amplitudes(εa =±0.5、±1、±2、2.6,-0.4、3.6,-0.4%), and SD790-D16 and SD420-D16 bars with different spacing(s/db =4.5、5、6) and different amplitudes(εa =±0.5、±1、±2、2.6,-0.4、3.6,-0.4%), are provided for the testing. By means of a series of test program, some parameters such as the number of life cycles, behavior of bar fracture and suitable bar slenderness ratio under the cyclic loading will be found.
Test results show the load difference between the first cycle and the final cycle for SD790 bars is smaller than that for SD420 bars. However, the SD790 bars are fractured without warning, and the breaking surface is smooth. This article also analyzes the rebars anti-buckling spacing by measuring the effective length coefficient(k) and non-linear steel modulus(Et) of the testing bars. Thus the slenderness ratio(s/db) of anti-buckling spacing for the rebars can be calculated. It repeals the SD420 bars of s/db shall be smaller than 6 as recent ACI318 suggested. The SD790 bars of slender ratio shall be less than 4.Therefore, the SD690 bars normally used for New RC main bars shall be less than 5. |
論文目次 |
摘要 I
ABSTRACT III
誌謝 V
目錄 VI
表目錄 XI
圖目錄 XIII
符號說明 XXV
第一章 緒論 1
第二章 文獻回顧 2
2.1有關鋼筋挫曲研究 2
2.1.1箍筋間距規定 3
2.1.2 鋼筋受拉壓行為 3
2.2相關鋼筋低週期疲勞研究 4
2.2.1包辛格效應 4
2.2.2有關疲勞之經驗式 4
2.2.3相關研究 5
2.3梁構件垂直變位與曲率關係 8
2.3.1撓曲變位 8
2.3.2剪力變位 9
2.3.3滑移變位 10
2.3.4降伏後的總垂直變位 11
第三章 試體規劃與實驗步驟 12
3.1 試驗規劃 12
3.2規劃結果 13
3.3 試驗設備 14
3.3.1加載系統 14
3.3.2量測系統 14
3.4 試驗方法與步驟 15
3.4.1鋼筋裁切 15
3.4.2鋼筋固定 15
3.4.3軟體設定 16
3.4.4架設伸長計於鋼筋上 16
3.4.5試驗執行 16
3.5 試驗數據處理 17
3.5.1壽命迴圈數Nf 17
3.5.2 材料系數M、m 17
3.5.3 合適主筋繫筋間距 17
第四章 試驗結果 18
4.1 單向拉力與單向壓力 18
4.2遲滯迴圈圖 20
4.3試驗後鋼筋斷裂情形 20
4.4各參數對壽命迴圈數的影響 21
4.4.1 鋼筋直徑 22
4.4.2鋼筋強度 23
4.4.3間距大小 23
4.4.4振幅大小 24
4.5材料系數M、M 24
4.6 合適主筋繫筋間距之探討 25
第五章 結論與建議 27
5.1結論 27
5.2建議 28
參考文獻 29
附錄A 中性軸預測 111
計算之中性軸cmeas 111
預測之中性軸cpre 113
A.1 DR=3%,#10受拉 114
A.2 DR=3%,#8受拉 114
A.3 DR=6%,#10受拉 115
A.4 DR=6%,#8受拉 115
附錄B 曲率預測 116
#10受拉,計算ΦY,MEAS 116
#8受拉,計算ΦY,MEAS 116
計算之變位△U,MEAS 117
計算之曲率ΦU,MES 117
預測之曲率ΦU,PRED 118
B.1 DR=3%,#10受拉 118
B.2 DR=3%,#8受拉 118
B.3 DR=6%,#10受拉 119
B.4 DR=6%,#8受拉 119
附錄C鋼筋及混凝土表面應變預測 120
混凝土應變ΕCU 120
鋼筋應變ΕS,#10 、ΕS,#8及混凝土表面應變ΕC,MES 120
B.1 DR=3%,#10受拉 120
B.2 DR=3%,#8受拉 121
B.3 DR=6%,#10受拉 121
B.4 DR=6%,#8受拉 121
附錄D 材料系數M、M計算 122
附錄E ET值與不發生挫曲之間距計算 128
SD790-D16 128
SD420-D16 129
SD790-D13 129
SD420-D13 130
|
參考文獻 |
[1] American Concrete Institute (2014), Building Code Requirements for Reinforced Concrete (ACI 318-14) and Commentary, ACI Committee 318, Detroit, Michigan.
[2] NIST GCR 14-917-30 (2014), Use of High-Strength Reinforcement in Earthquake-Resistant Concrete Structures, National Institute of Standards and Technology,.
[3] J. Moehle (2015), Seismic Design of Reinforced Concrete Buildings, McGraw-Hill
[4] NZS3101(2006), Concrete Structual Standard, The design of Concrete Structures & Commentary on the Design of Concrete Structures, New Zenland Standard.
[5] Brown, J., and Kunnath, S. K. (2004) ,“Low Cycle Fatigue Failure of Reinforcing Steel Bars,” ACI Materials Journal, V. 101, No. 6, Nov.-Dec., 2004, pp. 457-466.
[6] Mander, J. B., Panthaki, F. D., and Kasalanati, A. (1994) , “Low-Cycle Fatigue Behavior of Reinforcing Steel,” J. Mater. Civ. Eng., N.6, pp. 453-468.
[7] Kunnath, S. K., Kanvinde, A., Xiao, Y., and Zhang, G. (2009), “Effects of Buckling and Low Cycle Fatigue on Seismic Performance of Reinforcing Bars and Mechanical Couplers for Critical Structural Member,” Technical Report, California Department of Transportation 59A0539.
[8] Kashani, M. M., Barmi, A. K., and Malinova, V.S. (2015), “Influence of Inelastic Bucking on Low-Cycle Fatigue Degradation of Reinforcing Bars,” Construction and Building Materials, N.94, pp. 644-655.
[9] ACI Innovation Task Group 4 (2007), Report on Structural Design & Detailing for High Strength Concrete in Moderate to High Seismic Applications, American Concrete Institute.
[10] 楊政穎 (2016),「高拉力SD690鋼筋截斷設計之研究」,碩士論文,王勇智教授指導,國立中央大學土木系,2016年10月。 |