博碩士論文 92222028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:3.14.143.149
姓名 吳嘉原(Jia-Yuan Wu)  查詢紙本館藏   畢業系所 物理學系
論文名稱 生物膜黏著引發的相分離—等效膜勢與數值模擬
(Adhesion-induced Phase Separation ofBiomembranes—Effective Potential and Simulations)
相關論文
★ 鍺銻碲相變化奈米薄膜之奈米尺度光熱性質的研究★ 波在一維系統中的傳播與局域化
★ 非平衡生物膜上的區塊形成★ 液滴上的彈性網絡
★ 黏著叢集在時變外力下的強度★ Modeling geometrical trajectories of actin-based motility
★ 隨機布耳網路在多連線且臨界情形下的特性★ 模擬脂質雙層膜上的分子機器
★ 組織動力學之建模★ Cell motility: active gel coupled to adhesion sites
★ Agent-based model for an order-driven market: herding effect, limit order strategies, and volatility enhanced trading activities★ Dynamics of the free boundary of a monolayer cell sheet
★ Onset of movement in a one-dimensional active gel model of cell motility★ Hydrodynamics and spontaneous flow of active permeating polar gels
★ Complex one-dimensional motion in complex soft matter systems★ Bacterial chemotaxis in random environment
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們以理論分析和數值模擬的方法來研究由兩種受體—配體鍵結所引發的生物膜黏著而造成的相分離。在考慮了受體—配體複合體所有可能的分佈後,我們得到了一個等效勢能,因此本系統可以被視為生物膜在一個等效的外加勢能中,我們用平均場論和高斯近似來分析這個等效膜勢,並且發現到:(1)在兩種受體—配體複合體高度差大時,受體—配體複合體高度差是造成相分離的主因;(2)在遠離平均場臨界點的兩相區,當相共存發生時,較硬受體—配體複合體的等效鍵結能是較大的,這是因為較軟受體—配體複合體的熵比較大的關係;(3)在靠近平均場臨界點的兩相區,我們畫出了等效膜勢後發現相共存發生在較軟受體—配體複合體的等效鍵結能較大的地方。受體—配體複合體密度對臨界點位置的影響是利用蒙地卡羅模擬來研究,其結果顯示當系統的受體—配體複合體密度減少時相分離生在受體—配體複合體高度差較大的地方。
摘要(英) We present theoretical analyses and numerical simulations for the adhesion-induced
phase separation of multi-component membranes with two types of ligand-receptor
complexes (junctions). We show that after integrating all possible distributions of
the junctions, the system can be regarded as a membrane under an effective external
potential. Mean field theory and Gaussian approximation are used to analyze the
effective membrane potential and we find (i) The height difference of the junctions
is the main factor that drives phase separation at sufficiently large junction height
difference. (ii) In the two phase region far from the mean-field critical point, because
of the higher entropy associated with the softer junctions, phase coexistence occurs
when the effective binding energy of the more rigid junctions is higher. (iii) In the
two phase region near the mean-field critical point, the shape of the effective potential
shows that the phase coexistence occurs when the effective binding energy of softer
junctions is higher. The effect of junction density on the critical point is studied by
Monte Carlo simulations, and the result shows that phase separation occurs at larger
junction height difference as junction density of the system decreases.
關鍵字(中) ★ 相分離
★ 黏著
★ 生物膜
關鍵字(英) ★ phase separation
★ biomembranes
★ adhesion
論文目次 1 Introduction . . . . . . . . . . . . . . . . . .1
2 The Model . . . . . . . . . . . . . . . . . . . 3
2.1 The Hamiltonian . . . . . . . . . . . . . . . 4
2.2 Phase Diagram: Zero Fluctuation . . . . . . . 8
2.2.1 Symmetric Case . . . . . . . . . . . . . . 10
2.2.2 Asymmetric Case . . . . . . . . . . . . . .13
2.3 Gaussian Approximation . . . . . . . . . . .18
2.4 Summary . . . . . . . . . . . . . . . . . . .22
3 Numerical Simulation . . . . . . . . . . . . . 23
3.1 Monte Carlo Simulation . . . . . . . . . . . 23
3.1.1 Metropolis Algorithm . . . . . . . . . . . 23
3.1.2 Monte Carlo Steps . . . . . . . . . . . . .24
3.1.3 Snapshots in MC Simulations . . . . . . . .24
3.2 The Binder Cumulant and Critical Point . . . 31
3.3 Results and Discussions . . . . . . . . . . .31
4 Conclusions . . . . . . . . . . . . . . . . . .37
參考文獻 [1] R. Bruinsma, M. Goulian, and P. Pincus, Biophys. J. 67, 746, (1994).
[2] D. Zuckerman and R. Bruinsma, Phys. Rev. Lett., 74, 3900, (1995).
[3] R. Lipowsky and E. Sackmann, The Structure and Dynamics of Membranes,
(Elsevier, Amsterdam, 1995).
[4] R. Lipowsky, Phys. Rev. Lett., 77, 1652, (1996).
[5] A. AlbersdÄorfer, T. Feder, and E. Sackmann, Biophys. J., 73, 245, (1997).
[6] J. Nardi, T. Feder, and E. Sackmann, Europhys. Lett. 37, 371, (1997).
[7] R. Bruinsma, A. Behrisch, and E. Sackmann, Phys. Rev. E, 61, 4253, (2000).
[8] T. R. Weikl, R. R. Netz, and R. Lipowsky, Phys. Rev. E, 62 R45, (2000).
[9] S. Komura and D. Andelman, Eur. Phys. J. E, 3 259, (2000).
[10] T. R. Weikl and R. Lipowsky, Phys. Rev. E, 64, 011903, (2001).
[11] N.J. Burroughs and C. WÄul¯ng, Biophys. J. 83, 1784, (2002).
[12] C. R. F. Monks, et. al., Nature, 395, 82, (1998), G. Grakoui, et. al.,
Science, 285, 221, (1999), and D. M. Davis, et. al., Proc. Natl. Acad.
Sci. USA, 96, 15062, (1999).
[13] B. Alberts, D. Bray, J. Lewis, M. Fa®, K. Roberts, and J. D. Watson,
Molecular Biology of the Cell, 3rd ed. (Garland, New York, 1994).
[14] See, S.Y. Qi, J. T. Groves, and A. K. Chakraborty, Proc. Natl. Acad. Sci.
USA, 98, 6548, (2001).
[15] S. Raychaudhuri, A. K. Chakraborty, and M. Kardar, Phys. Rev. Lett. 91,
208101, (2003).
[16] T.R. Weikl, J.T. Groves, and R. Lipowsky, Europhys. Lett. 59, 916 (2002).
[17] T.R. Weikl and R. Lipowsky, Biophys. J. 87, 3665, (2004).
[18] H. Y. Chen, Phys. Rev. E, 67, 031919,(2003).
[19] H. Strey, M. Peterson, and E. Sackmann, Biophys. J. 69, 478, (1995).
[20] Needham. D. and R. M. Hochmuth, Biophys. J. 61, 1664, (1992).
[21] G.I. Bell, M. Dembo, and P. Bongrand, Biophys. J. 45, 1051, (1984).
[22] R. Geotz, G. Gompper, and R. Lipowsky, Phys. Rev. Lett., 82, 221, (1999).
[23] K. Binder and D. W. Heerman, Monte Carlo Simulation in Statistical Physics
An Introduction, 2nd corrected ed. (Berlin, New York, Springer-Verlag,
(1992).
[24] T.R. Weikl, D. Andelman, S. Komura, and R. Lipowsky, Eur. Phys. J. E, 8,
59, (2002).
指導教授 陳宣毅(Hsuan-Yi Chen) 審核日期 2005-9-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明