參考文獻 |
王俊凱, & 鄧亦翔. (2014). 夏季斗六地區大氣粒狀物粒徑成份初探. 雲林科技大學環境與安全衛生工程學系實務專題.
江智偉, & 倪簡白. (2007). 光達遙測中壢地區夜間邊界層變化和低層噴流之討論. 大氣科學, 35(1), 1-11.
李慶偉. (2014). 中壢地區光達消光散射比之長期分析與污染物關聯性研究. 中央大學大氣物理研究所學位論文, 1-89.
林毓珣, 白凱棣, 彭義強, & 林緯翰. (2016). 雲林縣細懸浮微粒(PM2.5)污染來源調查分析暨空品預警應變計畫. 103-050
徐開炫. (2011). 2009 年春季鹿林山背景站氣膠垂直分佈與光學特性分析. 中央大學大氣物理研究所學位論文, 1-133.
徐睿鴻. (2007). 鹿林山與中壢氣膠光學垂直特性之監測與比較. 中央大學大氣物理研究所學位論文, 1-107.
郭俊江. (2006). 光達及太陽輻射儀之應用: 2005 中壢氣膠光學垂直特性及邊界層高度之變化. 中央大學大氣物理研究所學位論文, 1-124.
黃淑倫, 林裕清, 郭素娥, 紀妙青, 林玠模, 周姜廷, & 黃友珊. (2016). 嘉南地區細懸浮微粒濃度與氣象因子相關性分析: 2006-2014. 台灣公共衛生雜誌, 35(6), 575-586.
溫志中, 方國權, & 蔡立宏. (2006). 台中港區空氣懸浮微粒特性研究. 港灣報導, (75), 39-45.
賈浩平. (2008). 微脈衝光達及太陽輻射儀之應用: 2005-2007 年中壢地區氣膠光學垂直特性分析. 中央大學大氣物理研究所學位論文.
謝政廷. (2013). 雲林地區河川揚塵及沙塵暴事件懸浮微粒之化學組成特性. 環球科技大學資源管理研究所學位論文.
錢滄海, & 陳奕愷. (2012). 濁水溪下游懸浮微粒與氣象因子關係之研究. 水土保持學報44(4) : 391 – 406.
Anderson, T. L., & Ogren, J. A. (1998). Determining aerosol radiative properties using the TSI 3563 integrating nephelometer. Aerosol Science and Technology, 29(1), 57-69.
Ansmann, A., Tesche, M., Groß, S., Freudenthaler, V., Seifert, P., Hiebsch, A., ... & Wiegner, M. (2010). The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany. Geophysical Research Letters, 37(13).
Arnott, W. P., Hamasha, K., Moosmüller, H., Sheridan, P. J., & Ogren, J. A. (2005). Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Science and Technology, 39(1), 17-29.
Barrett, E. W., & Ben-Dov, O. (1967). Application of the lidar to air pollution measurements. Journal of Applied Meteorology, 6(3), 500-515.
Campbell, J. R., Hlavka, D. L., Welton, E. J., Flynn, C. J., Turner, D. D., Spinhirne, J. D., ... & Hwang, I. H. (2002). Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instruments and data processing. Journal of Atmospheric and Oceanic Technology, 19(4), 431-442.
Chen, M. L., Mao, I. F., & Lin, I. K. (1999). The PM2.5 and PM10 particles in urban areas of Taiwan. Science of the total environment, 226(2), 227-235.
Chen, Z., Liu, W., Heese, B., Althausen, D., Baars, H., Cheng, T., ... & Zhang, T. (2014). Aerosol optical properties observed by combined Raman‐elastic backscatter lidar in winter 2009 in Pearl River Delta, south China. Journal of Geophysical Research: Atmospheres, 119(5), 2496-2510.
Cheng, M. T., Chou, W. C., Chio, C. P., Hsu, S. C., Su, Y. R., Kuo, P. H., ... & Chou, C. C. K. (2008). Compositions and source apportionments of atmospheric aerosol during Asian dust storm and local pollution in central Taiwan. Journal of atmospheric chemistry, 61(2), 155-173.
Chiang, C. W., Chen, W. N., Liang, W. A., Das, S. K., & Nee, J. B. (2007). Optical properties of tropospheric aerosols based on measurements of lidar, sun-photometer, and visibility at Chung-Li (25 N, 121 E). Atmospheric Environment, 41(19), 4128-4137.
Chio, C. P., Cheng, M. T., & Wang, C. F. (2004). Source apportionment to PM10 in different air quality conditions for Taichung urban and coastal areas, Taiwan. Atmospheric Environment, 38(39), 6893-6905.
Collis, R. T. (1965). Lidar observation of cloud. Science, 149(3687), 978-981.
Cropper, P. M., Hansen, J. C., & Eatough, D. J. (2013). Measurement of light scattering in an urban area with a nephelometer and PM2.5 FDMS TEOM monitor: accounting for the effect of water. Journal of the Air & Waste Management Association, 63(9), 1004-1011.
Ding, A. J., Huang, X., Nie, W., Sun, J. N., Kerminen, V. M., Petäjä, T., ... & Chi, X. G. (2016). Enhanced haze pollution by black carbon in megacities in China. Geophysical Research Letters, 43(6), 2873-2879.
Dubovik, O., & King, M. D. (2000). A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. Journal of Geophysical Research: Atmospheres, 105(D16), 20673-20696.
Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., ... & Slutsker, I. (2002). Variability of absorption and optical properties of key aerosol types observed in worldwide locations. Journal of the atmospheric sciences, 59(3), 590-608.
Eck, T. F., Holben, B. N., Dubovik, O., Smirnov, A., Goloub, P., Chen, H. B., ... & Ji, Q. (2005). Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid‐Pacific. Journal of Geophysical Research: Atmospheres, 110(D6).
Fiocco, G., & Smullin, L. D. (1963). Detection of scattering layers in the upper atmosphere (60–140 km) by optical radar. Nature, 199(4900), 1275-1276.
Flamant, C., Pelon, J., Flamant, P. H., & Durand, P. (1997). Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer. Boundary-Layer Meteorology, 83(2), 247-284.
Hansen, A. D. A., Rosen, H., & Novakov, T. (1984). The aethalometer—an instrument for the real-time measurement of optical absorption by aerosol particles. Science of the Total Environment, 36, 191-196.
Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., ... & Lavenu, F. (1998). AERONET—A federated instrument network and data archive for aerosol characterization. Remote sensing of environment, 66(1), 1-16.
Hsu, C. H., & Cheng, F. Y. (2016). Classification of weather patterns to study the influence of meteorological characteristics on PM 2.5 concentrations in Yunlin County, Taiwan. Atmospheric Environment, 144, 397-408.
Hulburt, E. O. (1937). Observations of a searchlight beam to an altitude of 28 kilometers. JOSA, 27(11), 377-382.
Jacob, D. J., & Winner, D. A. (2009). Effect of climate change on air quality. Atmospheric environment, 43(1), 51-63.
Klett, J. D. (1981). Stable analytical inversion solution for processing lidar returns. Applied Optics, 20(2), 211-220.
Klett, J. D. (1985). Lidar inversion with variable backscatter/extinction ratios. Applied Optics, 24(11), 1638-1643.
Menut, L., Flamant, C., Pelon, J., & Flamant, P. H. (1999). Urban boundary-layer height determination from lidar measurements over the Paris area. Applied Optics, 38(6), 945-954.
Müller, D., Ansmann, A., Mattis, I., Tesche, M., Wandinger, U., Althausen, D., & Pisani, G. (2007). Aerosol‐type‐dependent lidar ratios observed with Raman lidar. Journal of Geophysical Research: Atmospheres, 112(D16).
Quan, J., Gao, Y., Zhang, Q., Tie, X., Cao, J., Han, S., ... & Zhao, D. (2013). Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations. Particuology, 11(1), 34-40.
Park, S. S., Hansen, A. D., & Cho, S. Y. (2010). Measurement of real time black carbon for investigating spot loading effects of Aethalometer data. Atmospheric Environment, 44(11), 1449-1455.
Raut, J. C., & Chazette, P. (2009). Assessment of vertically-resolved PM10 from mobile lidar observations. Atmospheric Chemistry and Physics, 9(21), 8617-8638.
Soni, K., Singh, S., Bano, T., Tanwar, R. S., Nath, S., & Arya, B. C. (2010). Variations in single scattering albedo and Angstrom absorption exponent during different seasons at Delhi, India. Atmospheric environment, 44(35), 4355-4363.
Tai, A. P., Mickley, L. J., & Jacob, D. J. (2010). Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmospheric Environment, 44(32), 3976-3984.
Wang, S. H., Tsay, S. C., Lin, N. H., Chang, S. C., Li, C., Welton, E. J., ... & Kuo, C. C. (2013). Origin, transport, and vertical distribution of atmospheric pollutants over the northern South China Sea during the 7-SEAS/Dongsha Experiment. Atmospheric environment, 78, 124-133.
Wang, S. H., Welton, E. J., Holben, B. N., Tsay, S. C., Lin, N. H., Giles, D., ... & Chen, W. N. (2015). Vertical distribution and columnar optical properties of springtime biomass-burning aerosols over Northern Indochina during 2014 7-SEAS campaign. Aerosol Air Qual. Res, 15, 2037-2050.
Wang, S. Y., Hipps, L. E., Chung, O. Y., Gillies, R. R., & Martin, R. (2015). Long-term winter inversion properties in a mountain valley of the western United States and implications on air quality. journal of applied meteorology and climatology, 54(12), 2339-2352.
Whiteman, D. N., Rush, K., Veselovskii, I., Cadirola, M., Comer, J., Potter, J. R., & Tola, R. (2007). Demonstration measurements of water vapor, cirrus clouds, and carbon dioxide using a high-performance Raman lidar. Journal of atmospheric and oceanic technology, 24(8), 1377-1388.
Witschas, B., Rahm, S., Wagner, J., & Dörnbrack, A. (2016). Airborne Coherent Doppler Wind Lidar measurements of vertical and horizontal wind speeds for the investigation of gravity waves.
Xia, X. (2011). Variability of aerosol optical depth and Angstrom wavelength exponent derived from AERONET observations in recent decades. Environmental Research Letters, 6(4), 044011.
Xin, J., Zhang, Q., Wang, L., Gong, C., Wang, Y., Liu, Z., & Gao, W. (2014). The empirical relationship between the PM2.5 concentration and aerosol optical depth over the background of North China from 2009 to 2011. Atmospheric Research, 138, 179-188.
Yu, C., & Yi, F. (2008). Atmospheric temperature profiling by joint Raman, Rayleigh and Fe Boltzmann lidar measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 70(10), 1281-1288. |