以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:60 、訪客IP:18.119.102.149
姓名 陳建勳(Chien-Hsun Chen) 查詢紙本館藏 畢業系所 物理學系 論文名稱 非平衡生物膜上的區塊形成
(Finite-size Domains in a Membrane with Two-state Active Inclusions)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本論文提出一種可在非平衡生物膜上形成具有特徵大小的區塊的模型,並以蒙地卡羅模擬法來探討此模型與生物系統之關聯。本模型考慮由一種脂質分子與一種兩態活性分子組成之系統。兩種具有不同交互作用的特例被提出並討論之:(1)激發態活性分子傾向聚集﹔(2)基態活性分子傾向聚集。我們發現以下的結論:(i)藉由調整兩態活性分子的活性大小,可調控膜上區塊的大小。(ii)活性分子的密度與膜曲率的耦合可使區塊大小具有形成特徵大小的上限。(iii) 活性分子在膜上的擴散率亦與上述兩特性有關。 摘要(英) We propose a model that leads to the formation of non-equilibrium
finite-size domains in a biological membrane. Our model considers
the active conformational change of the inclusions and the coupling
between inclusion density and membrane curvature. Two special cases
with different interactions are studied by Monte Carlo simulations.
In case (i) exited state inclusions prefer to aggregate. In case
(ii) ground state inclusions prefer to aggregate. When the inclusion
density is not coupled to the local membrane curvature, in case (i)
the typical length scale ($sqrt{M}$) of the inclusion clusters
shows weak dependence on the excitation rate ($K_{on}$) of the
inclusions for a wide range of $K_{on}$ but increases fast when
$K_{on}$ becomes sufficiently large; in case (ii) $sqrt{M}sim
{K_{on}}^{-frac{1}{3}}$ for a wide range of $K_{on}$. When the
inclusion density is coupled to the local membrane curvature, the
curvature coupling provides the upper limit of the inclusion
clusters. In case (i) (case (ii)), the formation of the inclusions
is suppressed when $K_{off}$ ($K_{on}$) is sufficiently large such
that the ground state (excited state) inclusions do not have
sufficient time to aggregate. We also find that the mobility of an
inclusion in the membrane depends on inclusion-curvature coupling.
Our study suggests possible mechanisms that produce finite-size
domains in biological membranes.關鍵字(中) ★ 細胞膜
★ 模擬
★ 生物
★ 物理關鍵字(英) ★ simulation
★ membrane
★ physics
★ biological論文目次 1 Introduction 1
2 The model 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Simulation method 11
3.1 Metropolis algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Monte Carlo step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Statistics of cluster size . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Simulation results and discussion 21
4.1 Cluster size distribution . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.1 Short-time in-plane motions of inclusions . . . . . . . . . . . . 27
4.2.2 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.3 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
iii
5 Summary 40
A Non-dimensionalization of the Hamiltonian 47參考文獻 [1] H. Lodish et al., Molecular cell biology, 3rd ed (W.H. Freeman, New York, 1995).
[2] G. Vereb et al, Proc. Natl. Acad. Sci. USA 100, 8053, (2003).
[3] S.L. Veatch, I.V. Polozov, K. Gawrisch, and S.L. Keller, Biophys. J. 86, 2910,
(2004).
[4] M.S. Turner, P. Sens, and N.D. Socci, Phys. Rev. Lett. 95, 168301, (2005).
[5] L. Forest, Europhys. Lett. 71, 508, (2005).
[6] K. Simons and E. Ikonon, Nature, 387, 569, (1997).
[7] E. Sparr, Langmuir 15, 6950, (1999).
[8] H.Y. Chen, Phys. Rev. Lett. 92, 16, (2004).
[9] T.R. Weikl, Phys. Rev. E 66, 061915, (2002).
[10] M.C. Sabra and O.G. Mouritsen, Biophys. J. 74, 745, (1998).
[11] H. Strey, M. Peterson, and E. Sackmann, Biophys. J. 69, 478, (1995).
[12] Needham. D. and R. M. Hochmuth, Biophys. J. 61, 1664, (1992).
48
[13] K. Binder and D.W. Heermann, Monte Carlo Simulation in Statistical Physics.
2nd corrected ed. (Springer-Verlag, Berlin, 1992).
[14] W.R. Gibbs, Computaion in Modern Physics. (World Scientific, Singapore,
1994).
[15] T.R. Weikl and R. Lipowsky, Biophys. J. 87, 3665, (2004).
[16] M. Seul, N. Y. Morgan, and C. Sire, Phys. Rev. Lett. 73, 2284, (1994).
[17] A. J. Bray, Adv. Phys. 43, 357, (1994).
[18] L. C. -L Lin and F. L. H. Brown, Biophys. J. 86, 764, (2004).
[19] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics. (Clarendon Press,
Oxford, 1993).
[20] H-G D¨obereiner, E. Evanc, U. Seifert, and M. Wartis, Phys. Rev. Lett. 75, 3360,
(1995).指導教授 陳宣毅(Hsuan-Yi Chen) 審核日期 2005-12-30 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare