參考文獻 |
(1) O’Regan, B.; Grätzel, M., A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353, 737.
(2) Rocca, D.; Gebauer, R.; De Angelis, F.; Nazeeruddin, M. K.; Baroni, S., Time-Dependent Density Functional Theory Study of Squaraine Dye-Sensitized Solar Cells. Chem. Phys. Lett. 2009, 475, 49.
(3) Ardo, S.; Meyer, G. J., Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem. Soc. Rev. 2009, 38, 115.
(4) Grätzel, M., Recent Advances in Sensitized Mesoscopic Solar Cells. Acc. Chem. Res. 2009, 42, 1788.
(5) De Angelis, F.; Fantacci, S.; Sgamellotti, A., An integrated computational tool for the study of the optical properties of nanoscale devices: application to solar cells and molecular wires. Theor. Chem. Acc. 2007, 117, 1093.
(6) Chen, C.-Y.; Wu, S.-J.; Wu, C.-G.; Chen, J.-G.; Ho, K.-C., A Ruthenium Complex with Superhigh Light-Harvesting Capacity for Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed. 2006, 45, 5822.
(7) Kamat, P. V., Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion. J. Phys. Chem. C 2007, 111, 2834.
(8) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-Sensitized Solar Cells. Chem. Rev. 2010, 110, 6595.
(9) Mishra, A.; Fischer, M. K. R.; Bauerle, P., Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules. Angew. Chem. Int. Ed. 2009, 48, 2474.
(10) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humpbry-Baker, R.; Miiller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M., Conversion of Light to Electricity by cis-X2Bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes. J. Am. Chem. Soc. 1993, 115, 6382.
(11) Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M., Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. J. Am. Chem. Soc. 2005, 127, 16835.
(12) Hussain, M.; El-Shafei, A.; Islam, A.; Han, L., Structure-property relationship of extended pi-conjugation of ancillary ligands with and without an electron donor of heteroleptic Ru(II) bipyridyl complexes for high efficiency dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2013, 15, 8401.
(13) El-Shafei, A.; Hussain, M.; Atiq, A.; Islam, A.; Han, L., A novel carbazole-based dye outperformed the benchmark dye N719 for high efficiency dye-sensitized solar cells (DSSCs). J. Mater. Chem. 2012, 22, 24048.
(14) Sauvage, F.; Chen, D.; Comte, P.; Huang, F.; Heiniger, L. P.; Cheng, Y. B.; Caruso, R. A.; Graetzel, M., Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. ACS Nano 2010, 4, 4420.
(15) Chen, C.-Y.; Wang, M.; Li, J.-Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.-h.; Decoppet, J.-D.; Tsai, J.-H.; Grätzel, C.; Wu, C.-G.; Zakeeruddin, S. M.; Grätzel, M., Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells. ACS Nano 2009, 3, 3103.
(16) Hardin, B. E.; Snaith, H. J.; McGehee, M. D., The renaissance of dye-sensitized solar cells. Nat. Photon. 2012, 6, 162.
(17) Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M., Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334, 629.
(18) Namuangruk, S.; Fukuda, R.; Ehara, M.; Meeprasert, J.; Khanasa, T.; Morada, S.; Kaewin, T.; Jungsuttiwong, S.; Sudyoadsuk, T.; Promarak, V., D-D-π-A-Type Organic Dyes for Dye-Sensitized Solar Cells with a Potential for Direct Electron Injection and a High Extinction Coefficient: Synthesis, Characterization, and Theoretical Investigation. J. Phys. Chem. C 2012, 116, 25653.
(19) Velusamy, M.; Hsu, Y. C.; Lin, J. T.; Chang, C. W.; Hsu, C. P., 1-Alkyl-1H-imidazole-based dipolar organic compounds for dye-sensitized solar cells. Chem. Asian J. 2010, 5, 87.
(20) Yeh-Yung Lin, R.; Wu, F.-L.; Chang, C.-H.; Chou, H.-H.; Chuang, T.-M.; Chu, T.-C.; Hsu, C.-Y.; Chen, P.-W.; Ho, K.-C.; Lo, Y.-H.; Lin, J. T., Y-shaped metal-free D–π–(A)2 sensitizers for high-performance dye-sensitized solar cells. J. Mater. Chem. A 2014, 2, 3092.
(21) Ren, X.; Jiang, S.; Cha, M.; Zhou, G.; Wang, Z.-S., Thiophene-Bridged Double D-π-A Dye for Efficient Dye-Sensitized Solar Cell. Chem. Mater. 2012, 24, 3493.
(22) Chaurasia, S.; Hung, W. I.; Chou, H. H.; Lin, J. T., Incorporating a new 2H-[1,2,3]triazolo[4,5-c]pyridine moiety to construct D-A-pi-A organic sensitizers for high performance solar cells. Org. Lett. 2014, 16, 3052.
(23) Chen, G.; Sasabe, H.; Lu, W.; Wang, X.-F.; Kido, J.; Hong, Z.; Yang, Y., J-aggregation of a squaraine dye and its application in organic photovoltaic cells. J. Mater. Chem. C 2013, 1, 6547.
(24) Chen, G.; Sasabe, H.; Sasaki, Y.; Katagiri, H.; Wang, X.-F.; Sano, T.; Hong, Z.; Yang, Y.; Kido, J., A Series of Squaraine Dyes: Effects of Side Chain and the Number of Hydroxyl Groups on Material Properties and Photovoltaic Performance. Chem. Mater. 2014, 26, 1356.
(25) Shi, Y.; Hill, R. B.; Yum, J. H.; Dualeh, A.; Barlow, S.; Gratzel, M.; Marder, S. R.; Nazeeruddin, M. K., A high-efficiency panchromatic squaraine sensitizer for dye-sensitized solar cells. Angew. Chem. Int. Ed. 2011, 50, 6619.
(26) Dualeh, A.; Delcamp, J. H.; Nazeeruddin, M. K.; Gratzel, M., Near-infrared sensitization of solid-state dye-sensitized solar cells with a squaraine dye. Appl. Phys. Lett. 2012, 100, 173512.
(27) Geiger, T.; Kuster, S.; Yum, J. H.; Moon, S. J.; Nazeeruddin, M. K.; Gratzel, M.; Nuesch, F., Molecular Design of Unsymmetrical Squaraine Dyes for High Efficiency Conversion of Low Energy Photons into Electrons Using TiO2 Nanocrystalline Films. Adv. Funct. Mater. 2009, 19, 2720.
(28) Choi, H.; Kim, J.-J.; Song, K.; Ko, J.; Nazeeruddin, M. K.; Grätzel, M., Molecular engineering of panchromatic unsymmetrical squaraines for dye-sensitized solar cell applications. J. Mater. Chem. 2010, 20, 3280.
(29) Paek, S.; Choi, H.; Kim, C.; Cho, N.; So, S.; Song, K.; Nazeeruddin, M. K.; Ko, J., Efficient and Stable Panchromatic Squaraine Dyes for Dye-Sensitized Solar Cells. Chem. Commun. 2011, 47, 2874.
(30) Li, J. Y.; Lin, T. H.; Chen, S. C.; Wu, C. G., Unsymmetrical Squaraines Incorporating Cabazole as a Donor for Dye-Sensitized Solar Cells. J. Chin. Chem. Soc. 2012, 59, 1337.
(31) Pandey, S. S.; Watanabe, R.; Fujikawa, N.; Shivashimpi, G. M.; Ogomi, Y.; Yamaguchi, Y.; Hayase, S., Effect of extended pi-conjugation on photovoltaic performance of dye sensitized solar cells based on unsymmetrical squaraine dyes. Tetrahedron 2013, 69, 2633.
(32) Li, J. Y.; Chen, C. Y.; Lee, C. P.; Chen, S. C.; Lin, T. H.; Tsai, H. H.; Ho, K. C.; Wu, C. G., Unsymmetrical squaraines incorporating the thiophene unit for panchromatic dye-sensitized solar cells. Org. Lett. 2010, 12, 5454.
(33) Sreejith, S.; Carol, P.; Chithra, P.; Ajayaghosh, A., Squaraine dyes: a mine of molecular materials. J. Mater. Chem. 2008, 18, 264.
(34) Yum, J.-H.; Walter, P.; Huber, S.; Rentsch, D.; Geiger, T.; Nüesch, F.; De Angelis, F.; Grätzel, M.; Nazeeruddin, M. K., Efficient Far Red Sensitization of Nanocrystalline TiO2 Films by an Unsymmetrical Squaraine Dye. J. Am. Chem. Soc. 2007, 129, 10320.
(35) Becker, R. S.; Edwards, L.; Bost, R.; Elam, M.; Griffin, G., Spectroscopy of phenylcyclopropanes and phenylethanes. Unusual emissions from phenylcyclopropanes. J. Am. Chem. Soc. 1972, 94, 6584.
(36) Abe, M.; Adam, W.; Borden, W. T.; Hattori, M.; Hrovat, D. A.; Nojima, M.; Nozaki, K.; Wirz, J., Effects of spiroconjugation on the calculated singlet-triplet energy gap in 2,2-dialkoxycyclopentane-1,3-diyls and on the experimental electronic absorption spectra of singlet 1,3-diphenyl derivatives. Assignment of the lowest-energy electronic transition of singlet cyclopentane-1,3-diyls. J. Am. Chem. Soc. 2004, 126, 574.
(37) Abe, M.; Ye, J.; Mishima, M., The chemistry of localized singlet 1,3-diradicals (biradicals): from putative intermediates to persistent species and unusual molecules with a pi-single bonded character. Chem. Soc. Rev. 2012, 41, 3808.
(38) Nakagaki, T.; Sakai, T.; Mizuta, T.; Fujiwara, Y.; Abe, M., Kinetic stabilization and reactivity of pi single-bonded species: effect of the alkoxy group on the lifetime of singlet 2,2-dialkoxy-1,3-diphenyloctahydropentalene-1,3-diyls. Chemistry 2013, 19, 10395.
(39) Abe, M.; Adam, W.; Heidenfelder, T.; Nau, W. M.; Zhang, X., Intramolecular and Intermolecular Reactivity of Localized Singlet Diradicals: The Exceedingly Long-Lived 2,2-Diethoxy-1,3-diphenylcyclopentane-1,3-diyl. J. Am. Chem. Soc. 2000, 122, 2019.
(40) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Taroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J., Gaussian, Inc., Wallingford CT 2009.
(41) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. J. Comput. Chem. 2003, 24, 669.
(42) Wu, C. G.; Chung, M. F.; Tsai, H.-H. G.; Tan, C. J.; Chen, S. C.; Chang, C. H.; Shih, T. W., Fluorene-Containing Organic Photosensitizers for Dye-Sensitized Solar Cells. ChemPlusChem 2012, 77, 832.
(43) Wu, C. G.; Shieh, W. T.; Yang, C. S.; Tan, C. J.; Chang, C. H.; Chen, S. C.; Wu, C. Y.; Tsai, H. H. G., Molecular engineering of cyclopentadithiophene-containing organic dyes for dye-sensitized solar cell: Experimental results vs theoretical calculation. Dyes Pigm. 2013, 99, 1091.
(44) Yanai, T.; Tew, D. P.; Handy, N. C., A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51.
(45) Yakhanthip, T.; Jungsuttiwong, S.; Namuangruk, S.; Kungwan, N.; Promarak, V.; Sudyoadsuk, T.; Kochpradist, P., Theoretical investigation of novel carbazole-fluorene based D-π-A conjugated organic dyes as dye-sensitizer in dye-sensitized solar cells (DSCs). J. Comput. Chem. 2011, 32, 1568.
(46) Pastore, M.; Angelis, F. D., Aggregation of Organic Dyes on TiO2 in Dye-Sensitized Solar Cells Models: An ab Initio Investigation. ACS Nano 2010, 4, 556.
(47) Chen, P.; Yum, J. H.; Angelis, F. D.; Mosconi, E.; Fantacci, S.; Moon, S.-J.; Baker, R. H.; Ko, J.; Nazeeruddin, M. K.; Grätzel, M., High Open-Circuit Voltage Solid-State Dye-Sensitized Solar Cells with Organic Dye. Nano Lett. 2009, 9, 2487.
(48) Delley, B., An allelectron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508.
(49) Delley, B., From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756.
(50) Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865.
(51) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B: Condens. Matter 1992, 46, 6671.
(52) O′Boyle, N. M.; Tenderholt, A. L.; Langner, K. M., cclib: A Library for Package-Independent Computational Chemistry Algorithms. J. Comput. Chem. 2008, 29, 839.
(53) Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M.; Celani, P.; Györffy, W.; Kats, D.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; Shamasundar, K. R.; Adler, T. B.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Goll, E.; Hampel, C.; Hesselmann, A.; Hetzer, G.; Hrenar, T.; Jansen, G.; Köppl, C.; Liu, Y.; Lloyd, A. W.; Mata, R. A.; May, A. J.; McNicholas, S. J.; Meyer, W.; Mura, M. E.; Nicklaß, A.; O′Neill, D. P.; Palmieri, P.; Peng, D.; Pflüger, K.; Pitzer, R.; Reiher, M.; Shiozaki, T.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T.; Wang, M.; MOLPRO, a package of ab initio programs: 2012.
(54) Liu, S.; Bao, X.; Li, W.; Wu, K.; Xie, G.; Yang, R.; Yang, C., Benzo[1,2-b:4,5-b′]dithiophene and Thieno[3,4-c]pyrrole-4,6-dione Based Donor-π-Acceptor Conjugated Polymers for High Performance Solar Cells by Rational Structure Modulation. Macromolecules 2015, 48, 2948.
(55) Velusamy, M.; Thomas, K. R. J.; Lin, J. T.; Hsu, Y.-C.; Ho, K.-C., Organic Dyes Incorporating Low-Band-Gap Chromophores for Dye-Sensitized Solar Cells. Org. Lett. 2005, 7, 1899.
(56) Jungsuttiwong, S.; Yakhanthip, T.; Surakhot, Y.; Khunchalee, J.; Sudyoadsuk, T.; Promarak, V.; Kungwan, N.; Namuangruk, S., The effect of conjugated spacer on novel carbazole derivatives for dye-sensitized solar cells: Density functional theory/time-dependent density functional theory study. J. Comput. Chem. 2012, 33, 1517.
(57) Choi, H.; Shin, M.; Song, K.; Kang, M. S.; Kang, Y.; Ko, J., The impact of an indeno[1,2-b]thiophene spacer on dye-sensitized solar cell performances of cyclic thiourea functionalized organic sensitizers. J. Mater. Chem. A 2014, 2, 12931.
(58) Thomas, K. R. J.; Lin, J. T.; Baheti, A.; Tyagi, P.; Hsu, Y.-C., Simple Triarylamine-Based Dyes Containing Fluorene and Biphenyl Linkers for Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. C 2009, 113, 8541.
(59) Chen, R.; Yang, X.; Tian, H.; Wang, X.; Hagfeldt, A.; Sun, L., Effect of Tetrahydroquinoline Dyes Structure on the Performance of Organic Dye-Sensitized Solar Cells. Chem. Mater. 2007, 19, 4007.
(60) Lin, J. T.; Chaurasia, S.; Chen, Y.-C.; Chou, H.-H.; Wen, Y.-S., Coplanar indenofluorene-based organic dyes for dye-sensitized solar cells. Tetrahedron 2012, 68, 7755.
(61) Marinado, T.; Hagberg, D. P.; Hedlund, M.; Edvinsson, T.; Johansson, E. M.; Boschloo, G.; Rensmo, H.; Brinck, T.; Sun, L.; Hagfeldt, A., Rhodanine dyes for dye-sensitized solar cells : spectroscopy, energy levels and photovoltaic performance. Phys. Chem. Chem. Phys. 2009, 11, 133.
(62) Ardo, S.; Meyer, G. J., Characterization of photoinduced self-exchange reactions at molecule-semiconductor interfaces by transient polarization spectroscopy: lateral intermolecular energy and hole transfer across sensitized TiO2 thin films. J. Am. Chem. Soc. 2011, 133, 15384.
(63) Reference Solar Spectral Irradiance. http://rredc.nrel.gov/solar/spectra/am1.5/ ASTMG173/ASTMG173.html (accessed on Jan 31, 2016).
(64) Pazoki, M.; Lohse, P. W.; Taghavinia, N.; Hagfeldt, A.; Boschloo, G., The effect of dye coverage on the performance of dye-sensitized solar cells with a cobalt-based electrolyte. Phys. Chem. Chem. Phys. 2014, 16, 8503.
(65) Jungsuttiwong, S.; Yakhanthip, T.; Surakhot, Y.; Khunchalee, J.; Sudyoadsuk, T.; Promarak, V.; Kungwan, N.; Namuangruk, S., The effect of conjugated spacer on novel carbazole derivatives for dye-sensitized solar cells: density functional theory/time-dependent density functional theory study. J. Comput. Chem. 2012, 33, 1517.
(66) Dev, P.; Agrawal, S.; English, N. J., Functional assessment for predicting charge-transfer excitations of dyes in complexed state: a study of triphenylamine-donor dyes on titania for dye-sensitized solar cells. J. Phys. Chem. A 2013, 117, 2114.
(67) Nishida, J.-i.; Masuko, T.; Cui, Y.; Hara, K.; Shibuya, H.; Ihara, M.; Hosoyama, T.; Goto, R.; Mori, S.; Yamashita, Y., Molecular Design of Organic Dye toward Retardation of Charge Recombination at Semiconductor/Dye/Electrolyte Interface: Introduction of Twisted π-Linker. J. Phys. Chem. C 2010, 114, 17920.
(68) Chen, S.-L.; Yang, L.-N.; Li, Z.-S., How to design more efficient organic dyes for dye-sensitized solar cells? Adding more sp2-hybridized nitrogen in the triphenylamine donor. J. Power Sources 2013, 223, 86.
(69) Zhang, C. R.; Liu, L.; Zhe, J. W.; Jin, N. Z.; Yuan, L. H.; Chen, Y. H.; Wei, Z. Q.; Wu, Y. Z.; Liu, Z. J.; Chen, H. S., Comparative study on electronic structures and optical properties of indoline and triphenylamine dye sensitizers for solar cells. J. Mol. Model. 2013, 19, 1553.
(70) De Angelis, F.; Fantacci, S.; Mosconi, E.; Nazeeruddin, M. K.; Grätzel, M., Absorption Spectra and Excited State Energy Levels of the N719 Dye on TiO2 in Dye-Sensitized Solar Cell Models. J. Phys. Chem. C 2011, 115, 8825.
(71) Pastore, M.; Fantacci, S.; De Angelis, F., Modeling Excited States and Alignment of Energy Levels in Dye-Sensitized Solar Cells: Successes, Failures, and Challenges. J. Phys. Chem. C 2013, 117, 3685.
(72) Tateyama, Y.; Sumita, M.; Ootani, Y.; Aikawa, K.; Jono, R.; Han, L. y.; Sodeyama, K., Acetonitrile Solution Effect on Ru N749 Dye Adsorption and Excitation at TiO2 Anatase Interface. J. Phys. Chem. C 2014, 118, 16863.
(73) Teng, C.; Yang, X.; Yang, C.; Tian, H.; Li, S.; Wang, X.; Hagfeldt, A.; Sun, L., Influence of Triple Bonds as π-Spacer Units in Metal-Free Organic Dyes for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2010, 114, 11305.
(74) Chow, T. J.; Chang, Y.-C.; C07D409/14;C07D409/04;C07D333/22;C07C255/34 ed.; Academia Sinica: Tw, 2009.
(75) Watkins, S. E.; Evan, R. A.; Gupta, A.; Armel, V.; Xiang, W.; Fanchini, G.; MacFarlane, D. R.; Bach, U., The effect of direct amine substituted push–pull oligothiophene chromophores on dye-sensitized and bulk heterojunction solar cells performance. Tetrahedron 2013, 69, 3584.
(76) Rajnikant; Dinesh; Singh, D., X-ray structure determination and analysis of hydrogen interactions in 3, 3′-dimethoxybiphenyl. Bull. Mater. Sci. 2004, 27, 31.
(77) Zhao, Q.; Freeman, J. L.; Wang, J.; Zhang, Y.; Hamilton, T. P.; Lawson, C. M.; Gray, G. M., Syntheses, X-ray crystal structures, and optical, fluorescence, and nonlinear optical characterizations of diphenylphosphino-substituted bithiophenes. Inorg. Chem. 2012, 51, 2016.
(78) Teng, C.; Yang, X.; Yang, C.; Li, S.; Cheng, M.; Hagfeldt, A.; Sun, L., Molecular Design of Anthracene-Bridged Metal-Free Organic Dyes for Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. C 2010, 114, 9101.
(79) Luo, C.; Bi, W.; Deng, S.; Zhang, J.; Chen, S.; Li, B.; Liu, Q.; Peng, H.; Chu, J., Indolo[3,2,1-jk]carbazole Derivatives-Sensitized Solar Cells: Effect of π-Bridges on the Performance of Cells. J. Phys. Chem. C 2014, 118, 14211.
(80) Kumar, D.; Thomas, K. R.; Lee, C. P.; Ho, K. C., Organic dyes containing fluorene decorated with imidazole units for dye-sensitized solar cells. J. Org. Chem. 2014, 79, 3159.
(81) Qiu, M.; Brandt, R. G.; Niu, Y. L.; Bao, X. C.; Yu, D. H.; Wang, N.; Han, L. L.; Yu, L. M.; Xia, S. W.; Yang, R. Q., Theoretical Study on the Rational Design of Cyano-Substituted P3HT Materials for OSCs: Substitution Effect on the Improvement of Photovoltaic Performance. J. Phys. Chem. C 2015, 119, 8501.
(82) Zhou, H.; Xue, P.; Zhang, Y.; Zhao, X.; Jia, J.; Zhang, X.; Liu, X.; Lu, R., Fluorenylvinylenes bridged triphenylamine-based dyes with enhanced performance in dye-sensitized solar cells. Tetrahedron 2011, 67, 8477.
(83) Petrov, E. G.; Shevchenko, Y. V.; May, V., On the length dependence of bridge-mediated electron transfer reactions. Chem. Phys. 2003, 288, 269.
(84) Ogawa, M. Y.; Wishart, J. F.; Young, Z. Y.; Miller, J. R.; Isied, S. S., Distance Dependence of Intramolecular Electron-Transfer across Oligoprolines in [(Bpy)2RuIIL-(Pro)n-CoIII(NH3)5]3+, n = 1-6 - Different Effects for Helical and Nonhelical Polyproline-II Structures. J. Phys. Chem. 1993, 97, 11456.
(85) Ding, F.; Chapman, C. T.; Liang, W.; Li, X., Mechanisms of bridge-mediated electron transfer: a TDDFT electronic dynamics study. J. Chem. Phys. 2012, 137, 22A512.
(86) De Angelis, F., Direct vs. indirect injection mechanisms in perylene dye-sensitized solar cells: A DFT/TDDFT investigation. Chem. Phys. Lett. 2010, 493, 323.
(87) Boschloo, G.; Hagfeldt, A., Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells. Acc. Chem. Res. 2009, 42, 1819.
(88) Li, H.-B.; Zhang, J.; Wu, Y.; Jin, J.-L.; Duan, Y.-A.; Su, Z.-M.; Geng, Y., Theoretical study and design of triphenylamine-malononitrile-based p-type organic dyes with different π-linkers for dyes-sensitized solar cells. Dyes Pigm. 2014, 108, 106.
(89) Han, L. H.; Zhang, C. R.; Zhe, J. W.; Jin, N. Z.; Shen, Y. L.; Wang, W.; Gong, J. J.; Chen, Y. H.; Liu, Z. J., Understanding the Electronic Structures and Absorption Properties of Porphyrin Sensitizers YD2 and YD2-o-C8 for Dye-Sensitized Solar Cells. Int. J. Mol. Sci. 2013, 14, 20171.
(90) El-Shishtawy, R. M.; Asiri, A. M.; Aziz, S. G.; Elroby, S. A., Molecular design of donor-acceptor dyes for efficient dye-sensitized solar cells I: a DFT study. J. Mol. Model. 2014, 20, 2241.
(91) Maeda, T.; Shirna, N.; Tsukamoto, T.; Yagi, S.; Nakazumi, H., Unsymmetrical squarylium dyes with pi-extended heterocyclic components and their application to organic dye-sensitized solar cells. Synth. Met. 2011, 161, 2481.
(92) Delcamp, J. H.; Shi, Y.; Yum, J. H.; Sajoto, T.; Dell′Orto, E.; Barlow, S.; Nazeeruddin, M. K.; Marder, S. R.; Gratzel, M., The role of pi bridges in high-efficiency DSCs based on unsymmetrical squaraines. Chemistry 2013, 19, 1819.
(93) Paterson, M. J.; Blancafort, L.; Wilsey, S.; Robb, M. A., Photoinduced Electron Transfer in Squaraine Dyes: Sensitization of Large Band Gap Semiconductors. J. Phys. Chem. A 2002, 106, 11431.
(94) Yesudas, K.; Chaitanya, G. K.; Prabhakar, C.; Bhanuprakash, K.; Rao, V. J., Structure, Bonding, and Lowest Energy Transitions in Unsymmetrical Squaraines: A Computational Study. J. Phys. Chem. A 2006, 110, 11717.
(95) Ning, Z. J.; Fu, Y.; Tian, H., Improvement of dye-sensitized solar cells: what we know and what we need to know. Energ Environ. Sci. 2010, 3, 1170.
(96) Choi, H.; Lee, J. K.; Song, K.; Kang, S. O.; Ko, J., Novel organic dyes containing bis-dimethylfluorenyl amino benzo[b]thiophene for highly efficient dye-sensitized solar cell. Tetrahedron 2007, 63, 3115.
(97) Hua, Y.; Chang, S.; Huang, D. D.; Zhou, X.; Zhu, X. J.; Zhao, J. Z.; Chen, T.; Wong, W. Y.; Wong, W. K., Significant Improvement of Dye-Sensitized Solar Cell Performance Using Simple Phenothiazine-Based Dyes. Chem. Mater. 2013, 25, 2146.
(98) Srinivas, K.; Prabhakar, C.; Devi, C. L.; Yesudas, K.; Bhanuprakash, K.; Rao, V. J., Enhanced Diradical Nature in Oxyallyl Derivatives Leads to Near Infra Red Absorption: A Comparative Study of the Squaraine and Croconate Dyes Using Computational Techniques. J. Phys. Chem. A 2007, 111, 3378.
(99) Steiner, E., Density-Difference Maps in Quantum Chemistry. Theoretica chimica acta 1982, 60, 561.
(100) Ding, W.-L.; Wang, D.-M.; Geng, Z.-Y.; Zhao, X.-L.; Xu, W.-B., Density functional theory characterization and verification of high-performance indoline dyes with D–A–π–A architecture for dye-sensitized solar cells. Dyes Pigm. 2013, 98, 125.
(101) Ding, W.-L.; Wang, D.-M.; Geng, Z.-Y.; Zhao, X.-L.; Yan, Y.-F., Molecular Engineering of Indoline-Based D–A−π–A Organic Sensitizers toward High Efficiency Performance from First-Principles Calculations. J. Phys. Chem. C 2013, 117, 17382.
(102) Liang, J.; Zhu, C.; Cao, Z., Electronic and optical properties of the triphenylamine-based organic dye sensitized TiO2 semiconductor: insight from first principles calculations. Phys. Chem. Chem. Phys. 2013, 15, 13844.
(103) Persson, P.; Bergström, R.; Lunell, S., Quantum Chemical Study of Photoinjection Processes in Dye-Sensitized TiO2 Nanoparticles. J. Phys. Chem. B 2000, 104, 10348.
(104) Jones, D. R.; Troisi, A., A method to rapidly predict the charge injection rate in dye sensitized solar cells. Phys. Chem. Chem. Phys. 2010, 12, 4625.
(105) Marchena, M. J.; de Miguel, G.; Cohen, B.; Organero, J. A.; Pandey, S.; Hayase, S.; Douhal, A., Real-Time Photodynamics of Squaraine-Based Dye-Sensitized Solar Cells with Iodide and Cobalt Electrolytes. J. Phys. Chem. C 2013, 117, 11906.
(106) The SQ8 is the analogous of SQ01 studied here. The difference of SQ8 and SQ01 in chemical structure is the length of alkyl chains at the indoline rings (ethyl chain for SQ8 and octyl chain for SQ01). |