博碩士論文 100283001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:18.116.80.206
姓名 譚俊瑞(Chun-Jui Tan)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(A Computational Study of Photochemistry: Dye-Sensitized Solar Cells and Ring-Opening Reactions)
相關論文
★ 嗜甲烷菌內甲烷單氧化酵素中催化反應中心三核銅模擬分子之合成與光譜分析★ 烷烴氧化菌及氧化酵素之純化與功能性探討
★ 以電腦模擬研究香蕉型液晶元的分子交互作用力★ 利用時間相關的電子密度泛函理論研究反式-二苯乙烯胺的光化學行為
★ 以生物資訊法研究穩定Asparagine在左手螺旋形下的交互作用力★ 葛蘭氏陰性菌脂質A之結構研究
★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響
★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應★ 利用時間相關的密度泛涵理論研究HBI分子及其衍生物在第一激發態的位能曲線
★ Replica-Exchange分子動態模擬法研究類澱粉胜肽25-35 嵌入膜與折疊的行為★ 抗菌胜肽資料庫分析及利用分子動態模擬法探討抗菌胜肽Indolicidin於生物膜上的行為
★ 網頁圖形界面在分子模擬上的應用★ 類澱粉胜肽Abeta(25-35) 序列影響該類胜肽在水-膜環境下的組態: 強調多樣性的神經毒性
★ 以分子動態模擬法研究陽離子-負電磷脂質雙層的配位網絡結構:延伸應用於膜融合機制★ 染料敏化太陽能電池吸光性質的計算研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 光化學是研究物質受光照射後所產生的化學效應。根據 Jablonski Diagram,分子吸光後有許多可能的反應途徑,其中一個是激發後的電荷轉移。染料敏化太陽能電池 (dye-sensitized solar cells, DSCs) 即依賴染料分子吸光,再將受激發的電子轉移至半導體中,進而形成一個完整的電池電路。染料分子必須要能夠有效地吸光並進行電荷轉移,因此,設計一個能符合要求的染料分子是必要的。然而,DSC元件效率牽扯到的變因太多,無法瞭解效率高低是否為染料分子所造成的影響。於是我們利用密度泛函理論 (density functional theory, DFT) 及含時密度泛函理論 (time-dependent DFT),探討分子的結構、光補捉效率及電荷轉移效率等特性。本研究針對具有推拉電子效應的 D- spacer-A 架構之分子做討論,包括 (1) 一系列具有相同推電子基團 (D) 及拉電子基團 (A) 但不同共軛基團的 D- spacer-A 有機染料分子與 (2) 七個已發表的含方酸 (squaraine) 之染料分子。所有的染料分子都是吸附於二氧化鈦模型進行計算研究。我們統整不同共軛基團對吸收波長、吸光度及電荷轉移機率的影響,以提供合理的染料分子設計之準則。
光化學過程也可能發生鍵結斷裂的反應。分子吸收光後,被激發至激發態,結構從 FranckCondon state 轉變為光化學產物。本研究即利用第一原理探討1,2-二苯基環丙烷衍生物在第一激發態的鍵結斷裂反應。計算結果指出,斷裂的鍵為環丙烷結構中最長的鍵;同時,也得到分子在激發態的鍵結斷裂位能曲面及能量障礙。環丙烷衍生物的3號位置之取代基為甲氧基時,其位能曲面上之能量障礙是取代基為甲基時的一半。另外,甲氧基與苯基之間的立體障礙促使以甲氧基為取代基之分子可形成puckered狀態。此計算結果可說明實驗上只能觀察到含甲氧基之分子具有長波長螢光的可能原因。
摘要(英) Photochemistry is the study of chemistry concerned with the effects of light. According to the Jablonski Diagram, the molecule absorbs the light to enter an excited state and there are many reaction pathways may occur. One of the photochemical processes is electron transfer. The working principle of dye-sensitized solar cells (DSCs) relies on the excited electron transferred from the dye to the absorbed semiconductor (electron injection process) and then complete a full circuit of solar cell. It is desired to design excellent dyes for high-efficiency light absorbance and electron injection. However, the effects of the dye on the efficiency (η) of the DSC device are complicated. We employed density functional theory and time-dependent DFT to investigate the molecular structures, light harvesting efficiency and electron transfer properties of dye molecules based on D- spacer-A framework. The two series of studied dyes are (a) a series of D- spacer-A dyes with the same donor and acceptor but different spacer moieties and (b) seven published squaraine-based dyes. All of them are investigated when they are adsorbed on (TiO2)38 cluster. We provide a detailed benchmark for the effects of different spacer on max, oscillator strength, and probability of electron transfer. Some rules for rational dye design are drawn.
Photochemical processes include not only electron transfer process but also reactions. After the molecule absorbs the light, it reaches the excited state and then its geometry may be transformed from the FranckCondon state to the photoproduct. The bond-breaking reactions of 1,2-diphenylcyclopropane derivatives at the first singlet excited state was investigated by first-principle calculations in our study. The results indicate that the broken bond (C1C2) is longer than the other two bonds of cyclopropane. Moreover, the calculations show the molecular properties and activation energy on the potential-energy surface of C1C2 bond breaking. The activation energy required to break the C1C2 bond in the molecule with methoxy substituents (CP1a*) is more than two times lower than that in the molecule with methyl substituents (CP2a*), supporting experimental observations. The steric hindrance between methoxy groups and phenyl rings of CP1a* result in the formation of a puckered state.
關鍵字(中) ★ 染料敏化太陽能電池
★ D-pi-A 有機染料
★ 電荷轉移
★ 激發態
★ 開環反應
★ 雙自由基
關鍵字(英) ★ D-pi spacer-A dyes
★ Squaraine dyes
★ Charge-Transfer
★ Energy alignment
★ Bond breaking
★ Diradical
論文目次 摘要 i
Abstract ii
致謝 iv
Contents v
List of Figures vi
List of Tables viii
Chapter 1 Introduction 1
Chapter 2 Computational Methods 9
Chapter 3 Results and Discussion 14
3-1 Spacer Effects of Donor- Spacer-Acceptor Sensitizers on Photophysical Properties in Dye-Sensitized Solar Cells 15
3-2 Electron Transfer of Squaraine-Derived Dyes Adsorbed on TiO2 Clusters in Dye-Sensitized Solar Cells: A Density Functional Theory Investigation 40
3-3 A CASSCF Study of Substituent Effects on the LongWavelength Emission Species from 1,2-diphenylcyclopropane Derivatives 64
Chapter 4 Conclusion 84
Publications 87
References 88
參考文獻 (1) O’Regan, B.; Grätzel, M., A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353, 737.
(2) Rocca, D.; Gebauer, R.; De Angelis, F.; Nazeeruddin, M. K.; Baroni, S., Time-Dependent Density Functional Theory Study of Squaraine Dye-Sensitized Solar Cells. Chem. Phys. Lett. 2009, 475, 49.
(3) Ardo, S.; Meyer, G. J., Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem. Soc. Rev. 2009, 38, 115.
(4) Grätzel, M., Recent Advances in Sensitized Mesoscopic Solar Cells. Acc. Chem. Res. 2009, 42, 1788.
(5) De Angelis, F.; Fantacci, S.; Sgamellotti, A., An integrated computational tool for the study of the optical properties of nanoscale devices: application to solar cells and molecular wires. Theor. Chem. Acc. 2007, 117, 1093.
(6) Chen, C.-Y.; Wu, S.-J.; Wu, C.-G.; Chen, J.-G.; Ho, K.-C., A Ruthenium Complex with Superhigh Light-Harvesting Capacity for Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed. 2006, 45, 5822.
(7) Kamat, P. V., Meeting the Clean Energy Demand:  Nanostructure Architectures for Solar Energy Conversion. J. Phys. Chem. C 2007, 111, 2834.
(8) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-Sensitized Solar Cells. Chem. Rev. 2010, 110, 6595.
(9) Mishra, A.; Fischer, M. K. R.; Bauerle, P., Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules. Angew. Chem. Int. Ed. 2009, 48, 2474.
(10) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humpbry-Baker, R.; Miiller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M., Conversion of Light to Electricity by cis-X2Bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes. J. Am. Chem. Soc. 1993, 115, 6382.
(11) Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M., Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. J. Am. Chem. Soc. 2005, 127, 16835.
(12) Hussain, M.; El-Shafei, A.; Islam, A.; Han, L., Structure-property relationship of extended pi-conjugation of ancillary ligands with and without an electron donor of heteroleptic Ru(II) bipyridyl complexes for high efficiency dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2013, 15, 8401.
(13) El-Shafei, A.; Hussain, M.; Atiq, A.; Islam, A.; Han, L., A novel carbazole-based dye outperformed the benchmark dye N719 for high efficiency dye-sensitized solar cells (DSSCs). J. Mater. Chem. 2012, 22, 24048.
(14) Sauvage, F.; Chen, D.; Comte, P.; Huang, F.; Heiniger, L. P.; Cheng, Y. B.; Caruso, R. A.; Graetzel, M., Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. ACS Nano 2010, 4, 4420.
(15) Chen, C.-Y.; Wang, M.; Li, J.-Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.-h.; Decoppet, J.-D.; Tsai, J.-H.; Grätzel, C.; Wu, C.-G.; Zakeeruddin, S. M.; Grätzel, M., Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells. ACS Nano 2009, 3, 3103.
(16) Hardin, B. E.; Snaith, H. J.; McGehee, M. D., The renaissance of dye-sensitized solar cells. Nat. Photon. 2012, 6, 162.
(17) Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M., Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334, 629.
(18) Namuangruk, S.; Fukuda, R.; Ehara, M.; Meeprasert, J.; Khanasa, T.; Morada, S.; Kaewin, T.; Jungsuttiwong, S.; Sudyoadsuk, T.; Promarak, V., D-D-π-A-Type Organic Dyes for Dye-Sensitized Solar Cells with a Potential for Direct Electron Injection and a High Extinction Coefficient: Synthesis, Characterization, and Theoretical Investigation. J. Phys. Chem. C 2012, 116, 25653.
(19) Velusamy, M.; Hsu, Y. C.; Lin, J. T.; Chang, C. W.; Hsu, C. P., 1-Alkyl-1H-imidazole-based dipolar organic compounds for dye-sensitized solar cells. Chem. Asian J. 2010, 5, 87.
(20) Yeh-Yung Lin, R.; Wu, F.-L.; Chang, C.-H.; Chou, H.-H.; Chuang, T.-M.; Chu, T.-C.; Hsu, C.-Y.; Chen, P.-W.; Ho, K.-C.; Lo, Y.-H.; Lin, J. T., Y-shaped metal-free D–π–(A)2 sensitizers for high-performance dye-sensitized solar cells. J. Mater. Chem. A 2014, 2, 3092.
(21) Ren, X.; Jiang, S.; Cha, M.; Zhou, G.; Wang, Z.-S., Thiophene-Bridged Double D-π-A Dye for Efficient Dye-Sensitized Solar Cell. Chem. Mater. 2012, 24, 3493.
(22) Chaurasia, S.; Hung, W. I.; Chou, H. H.; Lin, J. T., Incorporating a new 2H-[1,2,3]triazolo[4,5-c]pyridine moiety to construct D-A-pi-A organic sensitizers for high performance solar cells. Org. Lett. 2014, 16, 3052.
(23) Chen, G.; Sasabe, H.; Lu, W.; Wang, X.-F.; Kido, J.; Hong, Z.; Yang, Y., J-aggregation of a squaraine dye and its application in organic photovoltaic cells. J. Mater. Chem. C 2013, 1, 6547.
(24) Chen, G.; Sasabe, H.; Sasaki, Y.; Katagiri, H.; Wang, X.-F.; Sano, T.; Hong, Z.; Yang, Y.; Kido, J., A Series of Squaraine Dyes: Effects of Side Chain and the Number of Hydroxyl Groups on Material Properties and Photovoltaic Performance. Chem. Mater. 2014, 26, 1356.
(25) Shi, Y.; Hill, R. B.; Yum, J. H.; Dualeh, A.; Barlow, S.; Gratzel, M.; Marder, S. R.; Nazeeruddin, M. K., A high-efficiency panchromatic squaraine sensitizer for dye-sensitized solar cells. Angew. Chem. Int. Ed. 2011, 50, 6619.
(26) Dualeh, A.; Delcamp, J. H.; Nazeeruddin, M. K.; Gratzel, M., Near-infrared sensitization of solid-state dye-sensitized solar cells with a squaraine dye. Appl. Phys. Lett. 2012, 100, 173512.
(27) Geiger, T.; Kuster, S.; Yum, J. H.; Moon, S. J.; Nazeeruddin, M. K.; Gratzel, M.; Nuesch, F., Molecular Design of Unsymmetrical Squaraine Dyes for High Efficiency Conversion of Low Energy Photons into Electrons Using TiO2 Nanocrystalline Films. Adv. Funct. Mater. 2009, 19, 2720.
(28) Choi, H.; Kim, J.-J.; Song, K.; Ko, J.; Nazeeruddin, M. K.; Grätzel, M., Molecular engineering of panchromatic unsymmetrical squaraines for dye-sensitized solar cell applications. J. Mater. Chem. 2010, 20, 3280.
(29) Paek, S.; Choi, H.; Kim, C.; Cho, N.; So, S.; Song, K.; Nazeeruddin, M. K.; Ko, J., Efficient and Stable Panchromatic Squaraine Dyes for Dye-Sensitized Solar Cells. Chem. Commun. 2011, 47, 2874.
(30) Li, J. Y.; Lin, T. H.; Chen, S. C.; Wu, C. G., Unsymmetrical Squaraines Incorporating Cabazole as a Donor for Dye-Sensitized Solar Cells. J. Chin. Chem. Soc. 2012, 59, 1337.
(31) Pandey, S. S.; Watanabe, R.; Fujikawa, N.; Shivashimpi, G. M.; Ogomi, Y.; Yamaguchi, Y.; Hayase, S., Effect of extended pi-conjugation on photovoltaic performance of dye sensitized solar cells based on unsymmetrical squaraine dyes. Tetrahedron 2013, 69, 2633.
(32) Li, J. Y.; Chen, C. Y.; Lee, C. P.; Chen, S. C.; Lin, T. H.; Tsai, H. H.; Ho, K. C.; Wu, C. G., Unsymmetrical squaraines incorporating the thiophene unit for panchromatic dye-sensitized solar cells. Org. Lett. 2010, 12, 5454.
(33) Sreejith, S.; Carol, P.; Chithra, P.; Ajayaghosh, A., Squaraine dyes: a mine of molecular materials. J. Mater. Chem. 2008, 18, 264.
(34) Yum, J.-H.; Walter, P.; Huber, S.; Rentsch, D.; Geiger, T.; Nüesch, F.; De Angelis, F.; Grätzel, M.; Nazeeruddin, M. K., Efficient Far Red Sensitization of Nanocrystalline TiO2 Films by an Unsymmetrical Squaraine Dye. J. Am. Chem. Soc. 2007, 129, 10320.
(35) Becker, R. S.; Edwards, L.; Bost, R.; Elam, M.; Griffin, G., Spectroscopy of phenylcyclopropanes and phenylethanes. Unusual emissions from phenylcyclopropanes. J. Am. Chem. Soc. 1972, 94, 6584.
(36) Abe, M.; Adam, W.; Borden, W. T.; Hattori, M.; Hrovat, D. A.; Nojima, M.; Nozaki, K.; Wirz, J., Effects of spiroconjugation on the calculated singlet-triplet energy gap in 2,2-dialkoxycyclopentane-1,3-diyls and on the experimental electronic absorption spectra of singlet 1,3-diphenyl derivatives. Assignment of the lowest-energy electronic transition of singlet cyclopentane-1,3-diyls. J. Am. Chem. Soc. 2004, 126, 574.
(37) Abe, M.; Ye, J.; Mishima, M., The chemistry of localized singlet 1,3-diradicals (biradicals): from putative intermediates to persistent species and unusual molecules with a pi-single bonded character. Chem. Soc. Rev. 2012, 41, 3808.
(38) Nakagaki, T.; Sakai, T.; Mizuta, T.; Fujiwara, Y.; Abe, M., Kinetic stabilization and reactivity of pi single-bonded species: effect of the alkoxy group on the lifetime of singlet 2,2-dialkoxy-1,3-diphenyloctahydropentalene-1,3-diyls. Chemistry 2013, 19, 10395.
(39) Abe, M.; Adam, W.; Heidenfelder, T.; Nau, W. M.; Zhang, X., Intramolecular and Intermolecular Reactivity of Localized Singlet Diradicals: The Exceedingly Long-Lived 2,2-Diethoxy-1,3-diphenylcyclopentane-1,3-diyl. J. Am. Chem. Soc. 2000, 122, 2019.
(40) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Taroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J., Gaussian, Inc., Wallingford CT 2009.
(41) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. J. Comput. Chem. 2003, 24, 669.
(42) Wu, C. G.; Chung, M. F.; Tsai, H.-H. G.; Tan, C. J.; Chen, S. C.; Chang, C. H.; Shih, T. W., Fluorene-Containing Organic Photosensitizers for Dye-Sensitized Solar Cells. ChemPlusChem 2012, 77, 832.
(43) Wu, C. G.; Shieh, W. T.; Yang, C. S.; Tan, C. J.; Chang, C. H.; Chen, S. C.; Wu, C. Y.; Tsai, H. H. G., Molecular engineering of cyclopentadithiophene-containing organic dyes for dye-sensitized solar cell: Experimental results vs theoretical calculation. Dyes Pigm. 2013, 99, 1091.
(44) Yanai, T.; Tew, D. P.; Handy, N. C., A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51.
(45) Yakhanthip, T.; Jungsuttiwong, S.; Namuangruk, S.; Kungwan, N.; Promarak, V.; Sudyoadsuk, T.; Kochpradist, P., Theoretical investigation of novel carbazole-fluorene based D-π-A conjugated organic dyes as dye-sensitizer in dye-sensitized solar cells (DSCs). J. Comput. Chem. 2011, 32, 1568.
(46) Pastore, M.; Angelis, F. D., Aggregation of Organic Dyes on TiO2 in Dye-Sensitized Solar Cells Models: An ab Initio Investigation. ACS Nano 2010, 4, 556.
(47) Chen, P.; Yum, J. H.; Angelis, F. D.; Mosconi, E.; Fantacci, S.; Moon, S.-J.; Baker, R. H.; Ko, J.; Nazeeruddin, M. K.; Grätzel, M., High Open-Circuit Voltage Solid-State Dye-Sensitized Solar Cells with Organic Dye. Nano Lett. 2009, 9, 2487.
(48) Delley, B., An allelectron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508.
(49) Delley, B., From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756.
(50) Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865.
(51) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B: Condens. Matter 1992, 46, 6671.
(52) O′Boyle, N. M.; Tenderholt, A. L.; Langner, K. M., cclib: A Library for Package-Independent Computational Chemistry Algorithms. J. Comput. Chem. 2008, 29, 839.
(53) Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M.; Celani, P.; Györffy, W.; Kats, D.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; Shamasundar, K. R.; Adler, T. B.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Goll, E.; Hampel, C.; Hesselmann, A.; Hetzer, G.; Hrenar, T.; Jansen, G.; Köppl, C.; Liu, Y.; Lloyd, A. W.; Mata, R. A.; May, A. J.; McNicholas, S. J.; Meyer, W.; Mura, M. E.; Nicklaß, A.; O′Neill, D. P.; Palmieri, P.; Peng, D.; Pflüger, K.; Pitzer, R.; Reiher, M.; Shiozaki, T.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T.; Wang, M.; MOLPRO, a package of ab initio programs: 2012.
(54) Liu, S.; Bao, X.; Li, W.; Wu, K.; Xie, G.; Yang, R.; Yang, C., Benzo[1,2-b:4,5-b′]dithiophene and Thieno[3,4-c]pyrrole-4,6-dione Based Donor-π-Acceptor Conjugated Polymers for High Performance Solar Cells by Rational Structure Modulation. Macromolecules 2015, 48, 2948.
(55) Velusamy, M.; Thomas, K. R. J.; Lin, J. T.; Hsu, Y.-C.; Ho, K.-C., Organic Dyes Incorporating Low-Band-Gap Chromophores for Dye-Sensitized Solar Cells. Org. Lett. 2005, 7, 1899.
(56) Jungsuttiwong, S.; Yakhanthip, T.; Surakhot, Y.; Khunchalee, J.; Sudyoadsuk, T.; Promarak, V.; Kungwan, N.; Namuangruk, S., The effect of conjugated spacer on novel carbazole derivatives for dye-sensitized solar cells: Density functional theory/time-dependent density functional theory study. J. Comput. Chem. 2012, 33, 1517.
(57) Choi, H.; Shin, M.; Song, K.; Kang, M. S.; Kang, Y.; Ko, J., The impact of an indeno[1,2-b]thiophene spacer on dye-sensitized solar cell performances of cyclic thiourea functionalized organic sensitizers. J. Mater. Chem. A 2014, 2, 12931.
(58) Thomas, K. R. J.; Lin, J. T.; Baheti, A.; Tyagi, P.; Hsu, Y.-C., Simple Triarylamine-Based Dyes Containing Fluorene and Biphenyl Linkers for Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. C 2009, 113, 8541.
(59) Chen, R.; Yang, X.; Tian, H.; Wang, X.; Hagfeldt, A.; Sun, L., Effect of Tetrahydroquinoline Dyes Structure on the Performance of Organic Dye-Sensitized Solar Cells. Chem. Mater. 2007, 19, 4007.
(60) Lin, J. T.; Chaurasia, S.; Chen, Y.-C.; Chou, H.-H.; Wen, Y.-S., Coplanar indenofluorene-based organic dyes for dye-sensitized solar cells. Tetrahedron 2012, 68, 7755.
(61) Marinado, T.; Hagberg, D. P.; Hedlund, M.; Edvinsson, T.; Johansson, E. M.; Boschloo, G.; Rensmo, H.; Brinck, T.; Sun, L.; Hagfeldt, A., Rhodanine dyes for dye-sensitized solar cells : spectroscopy, energy levels and photovoltaic performance. Phys. Chem. Chem. Phys. 2009, 11, 133.
(62) Ardo, S.; Meyer, G. J., Characterization of photoinduced self-exchange reactions at molecule-semiconductor interfaces by transient polarization spectroscopy: lateral intermolecular energy and hole transfer across sensitized TiO2 thin films. J. Am. Chem. Soc. 2011, 133, 15384.
(63) Reference Solar Spectral Irradiance. http://rredc.nrel.gov/solar/spectra/am1.5/ ASTMG173/ASTMG173.html (accessed on Jan 31, 2016).
(64) Pazoki, M.; Lohse, P. W.; Taghavinia, N.; Hagfeldt, A.; Boschloo, G., The effect of dye coverage on the performance of dye-sensitized solar cells with a cobalt-based electrolyte. Phys. Chem. Chem. Phys. 2014, 16, 8503.
(65) Jungsuttiwong, S.; Yakhanthip, T.; Surakhot, Y.; Khunchalee, J.; Sudyoadsuk, T.; Promarak, V.; Kungwan, N.; Namuangruk, S., The effect of conjugated spacer on novel carbazole derivatives for dye-sensitized solar cells: density functional theory/time-dependent density functional theory study. J. Comput. Chem. 2012, 33, 1517.
(66) Dev, P.; Agrawal, S.; English, N. J., Functional assessment for predicting charge-transfer excitations of dyes in complexed state: a study of triphenylamine-donor dyes on titania for dye-sensitized solar cells. J. Phys. Chem. A 2013, 117, 2114.
(67) Nishida, J.-i.; Masuko, T.; Cui, Y.; Hara, K.; Shibuya, H.; Ihara, M.; Hosoyama, T.; Goto, R.; Mori, S.; Yamashita, Y., Molecular Design of Organic Dye toward Retardation of Charge Recombination at Semiconductor/Dye/Electrolyte Interface: Introduction of Twisted π-Linker. J. Phys. Chem. C 2010, 114, 17920.
(68) Chen, S.-L.; Yang, L.-N.; Li, Z.-S., How to design more efficient organic dyes for dye-sensitized solar cells? Adding more sp2-hybridized nitrogen in the triphenylamine donor. J. Power Sources 2013, 223, 86.
(69) Zhang, C. R.; Liu, L.; Zhe, J. W.; Jin, N. Z.; Yuan, L. H.; Chen, Y. H.; Wei, Z. Q.; Wu, Y. Z.; Liu, Z. J.; Chen, H. S., Comparative study on electronic structures and optical properties of indoline and triphenylamine dye sensitizers for solar cells. J. Mol. Model. 2013, 19, 1553.
(70) De Angelis, F.; Fantacci, S.; Mosconi, E.; Nazeeruddin, M. K.; Grätzel, M., Absorption Spectra and Excited State Energy Levels of the N719 Dye on TiO2 in Dye-Sensitized Solar Cell Models. J. Phys. Chem. C 2011, 115, 8825.
(71) Pastore, M.; Fantacci, S.; De Angelis, F., Modeling Excited States and Alignment of Energy Levels in Dye-Sensitized Solar Cells: Successes, Failures, and Challenges. J. Phys. Chem. C 2013, 117, 3685.
(72) Tateyama, Y.; Sumita, M.; Ootani, Y.; Aikawa, K.; Jono, R.; Han, L. y.; Sodeyama, K., Acetonitrile Solution Effect on Ru N749 Dye Adsorption and Excitation at TiO2 Anatase Interface. J. Phys. Chem. C 2014, 118, 16863.
(73) Teng, C.; Yang, X.; Yang, C.; Tian, H.; Li, S.; Wang, X.; Hagfeldt, A.; Sun, L., Influence of Triple Bonds as π-Spacer Units in Metal-Free Organic Dyes for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2010, 114, 11305.
(74) Chow, T. J.; Chang, Y.-C.; C07D409/14;C07D409/04;C07D333/22;C07C255/34 ed.; Academia Sinica: Tw, 2009.
(75) Watkins, S. E.; Evan, R. A.; Gupta, A.; Armel, V.; Xiang, W.; Fanchini, G.; MacFarlane, D. R.; Bach, U., The effect of direct amine substituted push–pull oligothiophene chromophores on dye-sensitized and bulk heterojunction solar cells performance. Tetrahedron 2013, 69, 3584.
(76) Rajnikant; Dinesh; Singh, D., X-ray structure determination and analysis of hydrogen interactions in 3, 3′-dimethoxybiphenyl. Bull. Mater. Sci. 2004, 27, 31.
(77) Zhao, Q.; Freeman, J. L.; Wang, J.; Zhang, Y.; Hamilton, T. P.; Lawson, C. M.; Gray, G. M., Syntheses, X-ray crystal structures, and optical, fluorescence, and nonlinear optical characterizations of diphenylphosphino-substituted bithiophenes. Inorg. Chem. 2012, 51, 2016.
(78) Teng, C.; Yang, X.; Yang, C.; Li, S.; Cheng, M.; Hagfeldt, A.; Sun, L., Molecular Design of Anthracene-Bridged Metal-Free Organic Dyes for Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. C 2010, 114, 9101.
(79) Luo, C.; Bi, W.; Deng, S.; Zhang, J.; Chen, S.; Li, B.; Liu, Q.; Peng, H.; Chu, J., Indolo[3,2,1-jk]carbazole Derivatives-Sensitized Solar Cells: Effect of π-Bridges on the Performance of Cells. J. Phys. Chem. C 2014, 118, 14211.
(80) Kumar, D.; Thomas, K. R.; Lee, C. P.; Ho, K. C., Organic dyes containing fluorene decorated with imidazole units for dye-sensitized solar cells. J. Org. Chem. 2014, 79, 3159.
(81) Qiu, M.; Brandt, R. G.; Niu, Y. L.; Bao, X. C.; Yu, D. H.; Wang, N.; Han, L. L.; Yu, L. M.; Xia, S. W.; Yang, R. Q., Theoretical Study on the Rational Design of Cyano-Substituted P3HT Materials for OSCs: Substitution Effect on the Improvement of Photovoltaic Performance. J. Phys. Chem. C 2015, 119, 8501.
(82) Zhou, H.; Xue, P.; Zhang, Y.; Zhao, X.; Jia, J.; Zhang, X.; Liu, X.; Lu, R., Fluorenylvinylenes bridged triphenylamine-based dyes with enhanced performance in dye-sensitized solar cells. Tetrahedron 2011, 67, 8477.
(83) Petrov, E. G.; Shevchenko, Y. V.; May, V., On the length dependence of bridge-mediated electron transfer reactions. Chem. Phys. 2003, 288, 269.
(84) Ogawa, M. Y.; Wishart, J. F.; Young, Z. Y.; Miller, J. R.; Isied, S. S., Distance Dependence of Intramolecular Electron-Transfer across Oligoprolines in [(Bpy)2RuIIL-(Pro)n-CoIII(NH3)5]3+, n = 1-6 - Different Effects for Helical and Nonhelical Polyproline-II Structures. J. Phys. Chem. 1993, 97, 11456.
(85) Ding, F.; Chapman, C. T.; Liang, W.; Li, X., Mechanisms of bridge-mediated electron transfer: a TDDFT electronic dynamics study. J. Chem. Phys. 2012, 137, 22A512.
(86) De Angelis, F., Direct vs. indirect injection mechanisms in perylene dye-sensitized solar cells: A DFT/TDDFT investigation. Chem. Phys. Lett. 2010, 493, 323.
(87) Boschloo, G.; Hagfeldt, A., Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells. Acc. Chem. Res. 2009, 42, 1819.
(88) Li, H.-B.; Zhang, J.; Wu, Y.; Jin, J.-L.; Duan, Y.-A.; Su, Z.-M.; Geng, Y., Theoretical study and design of triphenylamine-malononitrile-based p-type organic dyes with different π-linkers for dyes-sensitized solar cells. Dyes Pigm. 2014, 108, 106.
(89) Han, L. H.; Zhang, C. R.; Zhe, J. W.; Jin, N. Z.; Shen, Y. L.; Wang, W.; Gong, J. J.; Chen, Y. H.; Liu, Z. J., Understanding the Electronic Structures and Absorption Properties of Porphyrin Sensitizers YD2 and YD2-o-C8 for Dye-Sensitized Solar Cells. Int. J. Mol. Sci. 2013, 14, 20171.
(90) El-Shishtawy, R. M.; Asiri, A. M.; Aziz, S. G.; Elroby, S. A., Molecular design of donor-acceptor dyes for efficient dye-sensitized solar cells I: a DFT study. J. Mol. Model. 2014, 20, 2241.
(91) Maeda, T.; Shirna, N.; Tsukamoto, T.; Yagi, S.; Nakazumi, H., Unsymmetrical squarylium dyes with pi-extended heterocyclic components and their application to organic dye-sensitized solar cells. Synth. Met. 2011, 161, 2481.
(92) Delcamp, J. H.; Shi, Y.; Yum, J. H.; Sajoto, T.; Dell′Orto, E.; Barlow, S.; Nazeeruddin, M. K.; Marder, S. R.; Gratzel, M., The role of pi bridges in high-efficiency DSCs based on unsymmetrical squaraines. Chemistry 2013, 19, 1819.
(93) Paterson, M. J.; Blancafort, L.; Wilsey, S.; Robb, M. A., Photoinduced Electron Transfer in Squaraine Dyes: Sensitization of Large Band Gap Semiconductors. J. Phys. Chem. A 2002, 106, 11431.
(94) Yesudas, K.; Chaitanya, G. K.; Prabhakar, C.; Bhanuprakash, K.; Rao, V. J., Structure, Bonding, and Lowest Energy Transitions in Unsymmetrical Squaraines: A Computational Study. J. Phys. Chem. A 2006, 110, 11717.
(95) Ning, Z. J.; Fu, Y.; Tian, H., Improvement of dye-sensitized solar cells: what we know and what we need to know. Energ Environ. Sci. 2010, 3, 1170.
(96) Choi, H.; Lee, J. K.; Song, K.; Kang, S. O.; Ko, J., Novel organic dyes containing bis-dimethylfluorenyl amino benzo[b]thiophene for highly efficient dye-sensitized solar cell. Tetrahedron 2007, 63, 3115.
(97) Hua, Y.; Chang, S.; Huang, D. D.; Zhou, X.; Zhu, X. J.; Zhao, J. Z.; Chen, T.; Wong, W. Y.; Wong, W. K., Significant Improvement of Dye-Sensitized Solar Cell Performance Using Simple Phenothiazine-Based Dyes. Chem. Mater. 2013, 25, 2146.
(98) Srinivas, K.; Prabhakar, C.; Devi, C. L.; Yesudas, K.; Bhanuprakash, K.; Rao, V. J., Enhanced Diradical Nature in Oxyallyl Derivatives Leads to Near Infra Red Absorption: A Comparative Study of the Squaraine and Croconate Dyes Using Computational Techniques. J. Phys. Chem. A 2007, 111, 3378.
(99) Steiner, E., Density-Difference Maps in Quantum Chemistry. Theoretica chimica acta 1982, 60, 561.
(100) Ding, W.-L.; Wang, D.-M.; Geng, Z.-Y.; Zhao, X.-L.; Xu, W.-B., Density functional theory characterization and verification of high-performance indoline dyes with D–A–π–A architecture for dye-sensitized solar cells. Dyes Pigm. 2013, 98, 125.
(101) Ding, W.-L.; Wang, D.-M.; Geng, Z.-Y.; Zhao, X.-L.; Yan, Y.-F., Molecular Engineering of Indoline-Based D–A−π–A Organic Sensitizers toward High Efficiency Performance from First-Principles Calculations. J. Phys. Chem. C 2013, 117, 17382.
(102) Liang, J.; Zhu, C.; Cao, Z., Electronic and optical properties of the triphenylamine-based organic dye sensitized TiO2 semiconductor: insight from first principles calculations. Phys. Chem. Chem. Phys. 2013, 15, 13844.
(103) Persson, P.; Bergström, R.; Lunell, S., Quantum Chemical Study of Photoinjection Processes in Dye-Sensitized TiO2 Nanoparticles. J. Phys. Chem. B 2000, 104, 10348.
(104) Jones, D. R.; Troisi, A., A method to rapidly predict the charge injection rate in dye sensitized solar cells. Phys. Chem. Chem. Phys. 2010, 12, 4625.
(105) Marchena, M. J.; de Miguel, G.; Cohen, B.; Organero, J. A.; Pandey, S.; Hayase, S.; Douhal, A., Real-Time Photodynamics of Squaraine-Based Dye-Sensitized Solar Cells with Iodide and Cobalt Electrolytes. J. Phys. Chem. C 2013, 117, 11906.
(106) The SQ8 is the analogous of SQ01 studied here. The difference of SQ8 and SQ01 in chemical structure is the length of alkyl chains at the indoline rings (ethyl chain for SQ8 and octyl chain for SQ01).
指導教授 蔡惠旭(Hui-Hsu Gavin Tsai) 審核日期 2017-6-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明