博碩士論文 104223060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:3.139.97.202
姓名 黃逸皓(Yi-Hao Huang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 開發綠色途徑之機械化學法快速合成鋯金屬有機骨架材料UiO-66衍生物
(Green and rapid synthesis of zirconium metal– organic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds)
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 金屬有機骨架材料(Metal-organic frameworks;MOFs)是近年來迅速崛起的一種孔洞材料(porous material)之一,其藉由金屬離子(metal ion)或金屬團簇(metal cluster)與有機配位體(organic linker)所構成,不同的組成單元及官能基具有不同的物理或化學性質,同時具有多孔性與高比表面積,因此其應用性非常廣泛。其中一種具有新穎性與突破性的應用為本實驗室所發表,將ZIFs(為MOFs的一個分支)與蛋白質酵素結合(CAT@ZIF-90),進行過氧化氫的催化反應,同時可以防止蛋白質水解酶的作用達到保護酵素的效果。並可藉由MOFs的結構提供一個研究生物分子行為的特殊的環境-如侷限性環境;因此這種酵素與骨架材料的結合的複合材料在生物催化上相當具有潛力,若能更進一步的拓展此領域,就可以探討更多的酵素行為。然而許多酵素的底物(substrates)都比過氧化氫大,無法進入ZIF-90孔洞被酵素催化;而且ZIF-90在酸性條件的結構穩定性不佳,無法應用到酸性環境中作用的生物分子。為此,我們選用相對穩定且孔徑較大的UiO-66,係因材料本身穩定性而有許多應用性,在近年來的研究更是如火如荼的展開,藉此期望能研究更多環境中的生物分子行為。然而,UiO-66一般都是在有機溶液下合成,縱使近年來已經有開發出利於蛋白酵素較溫和的水相合成條件,但還需加入會傷害酵素的乙酸當作添加劑,所以在水相尚待突破的同時,另一種只需少量溶劑的合成方法勢在必行。因此本研究主題為:利用機械力化學合成法的水輔助研磨反應得到金屬有機骨架材料UiO-66-F4,並以有機配位體與微量溶劑在球磨合成法中的溶解度效應切入,可於三分鐘的快速球磨反應後得到產物,並具有良好的水、熱穩定性及疏水性,且在實驗也發現反應六十分鐘後的產物具有較佳的孔洞性質。此種溫和且不需添加酸性有機溶劑的球磨合成環境,提供一個可應用於MOFs包覆酵素或奈米粒子的系統,兩種領域皆具有相當廣闊的前景。
摘要(英) Metal-organic frameworks (MOFs) are a class of porous crystalline materials composed of two main components: (i) clusters (or better multinuclear complexes) and (i) linker systems. In the past decade, they have been extensively studied because of their extraordinary porosity that makes them suitable for many applications. In particular, due to the variety of the choosing metallic clusters and organic linkers with different functional groups, MOFs have significantly physical and chemical properties. In these characters, a pretty interesting study reported by our lab about the combination of enzyme (Catalase) and MOF (ZIF-90) under a de novo approach. The ZIF-90 support provides an interesting size-sheltering function to catalase and protects catalase from the protein killer-proteinase-K. That study offers a novel tool to immobilize and impart new functions to biomolecules. In order to expand the routes for other enzymatic reactions, we choose UiO-66 (nominal composition: Zr6O4(OH)4(BDC)6; BDC = 1,4-benzene dicarboxylate) as our main material because UiO-66 with bigger aperture size at 6 Å comparing it in ZIF-90 at 3.5 Å. This property allows the bigger substrate to deliver into MOF structure for contacting embedded enzymes. Under harsh condition of the conventional way for the UiO-66 synthesis, normally, the catalytic activity of the biological component significantly is able to be deteriorated because of the chemically/thermally induced denaturation of protein. Therefore, a way of the milder condition to synthesize UiO-66 needs to be developed. In this regard, we provided a new approach, i.e., mechanochemistry, to synthesize MOF material in this study: a UiO-66 analog was synthesized in 180 s using water-assisted grinding. The linker solubility suggested that tetrafluorobenzene- 1,4-dicarboxylic acid was the best linker due to the lowest average pKa value. Zr-based Metal–organic framework nanocrystals displayed good topologies and hydrophobicities, and high water/thermal stabilities. The less amorphous complex led to higher porosities and pore volumes with a 60 min grinding time. Importantly, this mild approach for obtaining MOFs without hazardous solvents provides an additional avenue for converting biomolecules or metal nanoparticles into MOFs as composites for applications.
關鍵字(中) ★ 金屬有機骨架材料
★ 機械力化學法
★ 快速合成
關鍵字(英) ★ Metal–organic frameworks
★ Mechanochemistry
★ UiO-66
★ Rapid synthesis
論文目次 中文摘要 I
Abstract III
目錄 VI
圖目錄 VIII
表目錄 X
第一章 緒論 1
1-1 金屬有機骨架材料(Metal-organic Frameworks) 1
1-2 鋯金屬有機骨架材料(Zirconium Metal-organic Framework) 3
1-3 UiO-66文獻回顧 4
1-4 研究動機與目的 6
1-5 機械力化學合成法 8
第二章 實驗部分 11
2-1 實驗藥品 11
2-2 實驗儀器與設備 12
2-2-1 實驗合成設備 12
2-2-2 實驗鑑定儀器 12
2-3 實驗儀器之原理 13
2-3-1 中量快速球磨機(Ball Mill Instrument) 13
2-3-2 X射線粉末繞射儀(Powder X-ray Diffraction;PXRD) 14
2-3-3 等溫氮氣吸/脫附測量儀(Nitrogen ad/desorption isothermal measurement) 16
2-3-4 場發掃描式電子顯微鏡(Field-emission Scanning Electron Microscope;FE-SEM) 19
2-3-5 穿透式電子顯微鏡 (Transmission Electron Microscope;TEM) 20
2-3-6 熱重分析儀 (Thermogravimetric Analyzer;TGA) 21
2-3-7 固態核磁共振儀 (Solid State Nuclear Magnetic Resonance;SSNMR) 22
2-3-9 接觸角測量儀(Contact Angle Measurement) 24
2-4 實驗步驟 27
2-4-1 機械球磨法合成具有不同官能基的有機配位體之UiO-66 27
2-4-1 機械球磨法合成UiO-66-F4 28
2-4-2 熱溶劑法合成UiO-66 28
2-4-3 不同的有機配位體對水的溶解度測試 29
2-4-4 UiO-66-F4在水相中的晶體結構之穩定性測試 29
2-4-5 接觸角測量與樣品前處理 29
第三章 結果與討論 30
3-1 機械球磨合成UiO-66-F4 30
3-1-1 利用不同的有機配位體合成UiO-66-X晶體結構之討論 30
3-1-2 UiO-66-F4之一系列鑑定 32
3-1-3 不同的球磨頻率對UiO-66-F4合成結果之鑑定 42
3-1-4 不同的反應溶劑對UiO-66-F4合成結果之鑑定 43
3-2 UiO-66-F4的接觸角測量 43
3-3 UiO-66-F4在水相中的晶體結構穩定性之鑑定 45
第四章 結論與未來發展方向 47
第五章 參考文獻 49
參考文獻 1. Zhou, H.-C.; Long, J. R.; Yaghi, O. M., Introduction to Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 673-674.
2. Batten Stuart, R.; Champness Neil, R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Paik Suh, M.; Reedijk, J., Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure and Applied Chemistry 2013, 85 (8), 1715-1724.
3. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149), 1230444.
4. Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Belosludov, R. V.; Kobayashi, T. C.; Sakamoto, H.; Chiba, T.; Takata, M.; Kawazoe, Y.; Mita, Y., Highly controlled acetylene accommodation in a metal-organic microporous material. Nature 2005, 436 (7048), 238-241.
5. Li, J.-R.; Sculley, J.; Zhou, H.-C., Metal–Organic Frameworks for Separations. Chemical Reviews 2012, 112 (2), 869-932.
6. Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkov, A.; Verpoort, F., Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews 2015, 44 (19), 6804-6849.
7. Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J.-S.; Hwang, Y. K.; Marsaud, V.; Bories, P.-N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref, R., Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials 2010, 9 (2), 172-178.
8. Yen, C.-I.; Liu, S.-M.; Lo, W.-S.; Wu, J.-W.; Liu, Y.-H.; Chein, R.-J.; Yang, R.; Wu, K. C. W.; Hwu, J. R.; Ma, N.; Shieh, F.-K., Cytotoxicity of Postmodified Zeolitic Imidazolate Framework-90 (ZIF-90) Nanocrystals: Correlation between Functionality and Toxicity. Chemistry - A European Journal 2016, 22 (9), 2925-2929.
9. Langmi, H. W.; Ren, J.; Musyoka, N. M., Metal-Organic Frameworks as Materials for Fuel Cell Technologies. In Nanomaterials for Fuel Cell Catalysis, Ozoemena, K. I.; Chen, S., Eds. Springer International Publishing: Cham, 2016; pp 367-407.
10. Bétard, A.; Fischer, R. A., Metal–Organic Framework Thin Films: From Fundamentals to Applications. Chemical Reviews 2012, 112 (2), 1055-1083.
11. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews 2012, 112 (2), 1105-1125.
12. Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C.-J.; Shao-Horn, Y.; Dinca, M., Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature Materials 2017, 16 (2), 220-224.
13. Everett, D. H., Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure and Applied Chemistry 1972, 31 (4), 577.
14. Li, H.; Eddaoudi, M.; O′Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402 (6759), 276-279.
15. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 2012, 112 (2), 933-969.
16. Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M., Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64 (36), 8553-8557.
17. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.
18. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E., Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials 2009, 21 (13), 2580-2582.
19. Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal-Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330.
20. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a microporous metal-organic framework. CrystEngComm 2006, 8 (3), 211-214.
21. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications 2008, (31), 3642-3644.
22. James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friscic, T.; Grepioni, F.; Harris, K. D. M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A. G.; Parkin, I. P.; Shearouse, W. C.; Steed, J. W.; Waddell, D. C., Mechanochemistry: opportunities for new and cleaner synthesis. Chemical Society Reviews 2012, 41 (1), 413-447.
23. Bai, Y.; Dou, Y.; Xie, L.-H.; Rutledge, W.; Li, J.-R.; Zhou, H.-C., Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews 2016, 45 (8), 2327-2367.
24. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P., A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society 2008, 130 (42), 13850-13851.
25. Zhao, D.; Timmons, D. J.; Yuan, D.; Zhou, H.-C., Tuning the Topology and Functionality of Metal−Organic Frameworks by Ligand Design. Accounts of Chemical Research 2011, 44 (2), 123-133.
26. Feng, D.; Gu, Z.-Y.; Chen, Y.-P.; Park, J.; Wei, Z.; Sun, Y.; Bosch, M.; Yuan, S.; Zhou, H.-C., A Highly Stable Porphyrinic Zirconium Metal–Organic Framework with shp-a Topology. Journal of the American Chemical Society 2014, 136 (51), 17714-17717.
27. Feng, D.; Gu, Z.-Y.; Li, J.-R.; Jiang, H.-L.; Wei, Z.; Zhou, H.-C., Zirconium-Metalloporphyrin PCN-222: Mesoporous Metal–Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts. Angewandte Chemie International Edition 2012, 51 (41), 10307-10310.
28. Jiang, H.-L.; Feng, D.; Wang, K.; Gu, Z.-Y.; Wei, Z.; Chen, Y.-P.; Zhou, H.-C., An Exceptionally Stable, Porphyrinic Zr Metal–Organic Framework Exhibiting pH-Dependent Fluorescence. Journal of the American Chemical Society 2013, 135 (37), 13934-13938.
29. Feng, D.; Chung, W.-C.; Wei, Z.; Gu, Z.-Y.; Jiang, H.-L.; Chen, Y.-P.; Darensbourg, D. J.; Zhou, H.-C., Construction of Ultrastable Porphyrin Zr Metal–Organic Frameworks through Linker Elimination. Journal of the American Chemical Society 2013, 135 (45), 17105-17110.
30. Feng, D.; Wang, K.; Su, J.; Liu, T. F.; Park, J.; Wei, Z.; Bosch, M.; Yakovenko, A.; Zou, X.; Zhou, H. C., A Highly Stable Zeotype Mesoporous Zirconium Metal–Organic Framework with Ultralarge Pores. Angewandte Chemie International Edition 2015, 54 (1), 149-154.
31. Bon, V.; Senkovska, I.; Baburin, I. A.; Kaskel, S., Zr- and Hf-Based Metal–Organic Frameworks: Tracking Down the Polymorphism. Crystal Growth & Design 2013, 13 (3), 1231-1237.
32. Wang, T. C.; Bury, W.; Gómez-Gualdrón, D. A.; Vermeulen, N. A.; Mondloch, J. E.; Deria, P.; Zhang, K.; Moghadam, P. Z.; Sarjeant, A. A.; Snurr, R. Q.; Stoddart, J. F.; Hupp, J. T.; Farha, O. K., Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory. Journal of the American Chemical Society 2015, 137 (10), 3585-3591.
33. Hu, Z.; Castano, I.; Wang, S.; Wang, Y.; Peng, Y.; Qian, Y.; Chi, C.; Wang, X.; Zhao, D., Modulator Effects on the Water-Based Synthesis of Zr/Hf Metal–Organic Frameworks: Quantitative Relationship Studies between Modulator, Synthetic Condition, and Performance. Crystal Growth & Design 2016, 16 (4), 2295-2301.
34. Hu, Z.; Peng, Y.; Kang, Z.; Qian, Y.; Zhao, D., A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-Type MOFs. Inorganic Chemistry 2015, 54 (10), 4862-4868.
35. Atzori, C.; Shearer, G. C.; Maschio, L.; Civalleri, B.; Bonino, F.; Lamberti, C.; Svelle, S.; Lillerud, K. P.; Bordiga, S., Effect of Benzoic Acid as a Modulator in the Structure of UiO-66: An Experimental and Computational Study. The Journal of Physical Chemistry C 2017, 121 (17), 9312-9324.
36. Katz, M. J.; Brown, Z. J.; Colon, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K., A facile synthesis of UiO-66, UiO-67 and their derivatives. Chemical Communications 2013, 49 (82), 9449-9451.
37. Howarth, A. J.; Liu, Y.; Li, P.; Li, Z.; Wang, T. C.; Hupp, J. T.; Farha, O. K., Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials 2016, 1, 15018.
38. Shearer, G. C.; Chavan, S.; Ethiraj, J.; Vitillo, J. G.; Svelle, S.; Olsbye, U.; Lamberti, C.; Bordiga, S.; Lillerud, K. P., Tuned to Perfection: Ironing Out the Defects in Metal–Organic Framework UiO-66. Chemistry of Materials 2014, 26 (14), 4068-4071.
39. Shearer, G. C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.; Lillerud, K. P., Defect Engineering: Tuning the Porosity and Composition of the Metal–Organic Framework UiO-66 via Modulated Synthesis. Chemistry of Materials 2016, 28 (11), 3749-3761.
40. Vermoortele, F.; Bueken, B.; Le Bars, G.; Van de Voorde, B.; Vandichel, M.; Houthoofd, K.; Vimont, A.; Daturi, M.; Waroquier, M.; Van Speybroeck, V.; Kirschhock, C.; De Vos, D. E., Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society 2013, 135 (31), 11465-11468.
41. Choi, K. M.; Na, K.; Somorjai, G. A.; Yaghi, O. M., Chemical Environment Control and Enhanced Catalytic Performance of Platinum Nanoparticles Embedded in Nanocrystalline Metal–Organic Frameworks. Journal of the American Chemical Society 2015, 137 (24), 7810-7816.
42. Zhu, X.; Gu, J.; Wang, Y.; Li, B.; Li, Y.; Zhao, W.; Shi, J., Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. Chemical Communications 2014, 50 (63), 8779-8782.
43. Li, L.; Tang, S.; Wang, C.; Lv, X.; Jiang, M.; Wu, H.; Zhao, X., High gas storage capacities and stepwise adsorption in a UiO type metal-organic framework incorporating Lewis basic bipyridyl sites. Chemical Communications 2014, 50 (18), 2304-2307.
44. Ameloot, R.; Aubrey, M.; Wiers, B. M.; Gómora‐Figueroa, A. P.; Patel, S. N.; Balsara, N. P.; Long, J. R., Ionic Conductivity in the Metal–Organic Framework UiO‐66 by Dehydration and Insertion of Lithium tert‐Butoxide. Chemistry - A European Journal 2013, 19 (18), 5533-5536.
45. Yang, J.; Dai, Y.; Zhu, X.; Wang, Z.; Li, Y.; Zhuang, Q.; Shi, J.; Gu, J., Metal-organic frameworks with inherent recognition sites for selective phosphate sensing through their coordination-induced fluorescence enhancement effect. Journal of Materials Chemistry A 2015, 3 (14), 7445-7452.
46. Yaghi, O. M., Reticular Chemistry—Construction, Properties, and Precision Reactions of Frameworks. Journal of the American Chemical Society 2016, 138 (48), 15507-15509.
47. Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P., Modulated Synthesis of Zr‐Based Metal–Organic Frameworks: From Nano to Single Crystals. Chemistry - A European Journal 2011, 17 (24), 6643-6651.
48. Shieh, F. K.; Wang, S. C.; Leo, S. Y.; Wu, K. C. W., Water‐Based Synthesis of Zeolitic Imidazolate Framework‐90 (ZIF‐90) with a Controllable Particle Size. Chemistry - A European Journal 2013, 19 (34), 11139-11142.
49. Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C. W.; Tsung, C.-K., Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. Journal of the American Chemical Society 2015, 137 (13), 4276-4279.
50. Liao, F.-S.; Lo, W.-S.; Hsu, Y.-S.; Wu, C.-C.; Wang, S.-C.; Shieh, F.-K.; Morabito, J. V.; Chou, L.-Y.; Wu, K. C. W.; Tsung, C.-K., Shielding against Unfolding by Embedding Enzymes in Metal–Organic Frameworks via a de Novo Approach. Journal of the American Chemical Society 2017, 139 (19), 6530-6533.
51. Friščić, T., Metal-Organic Frameworks: Mechanochemical Synthesis Strategies. In Encyclopedia of Inorganic and Bioinorganic Chemistry, John Wiley & Sons, Ltd: 2011.
52. Friscic, T.; Childs, S. L.; Rizvi, S. A. A.; Jones, W., The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome. CrystEngComm 2009, 11 (3), 418-426.
53. Julien, P. A.; Užarević, K.; Katsenis, A. D.; Kimber, S. A. J.; Wang, T.; Farha, O. K.; Zhang, Y.; Casaban, J.; Germann, L. S.; Etter, M.; Dinnebier, R. E.; James, S. L.; Halasz, I.; Friščić, T., In Situ Monitoring and Mechanism of the Mechanochemical Formation of a Microporous MOF-74 Framework. Journal of the American Chemical Society 2016, 138 (9), 2929-2932.
54. Strobridge, F. C.; Judas, N.; Friscic, T., A stepwise mechanism and the role of water in the liquid-assisted grinding synthesis of metal-organic materials. CrystEngComm 2010, 12 (8), 2409-2418.
55. Do, J.-L.; Friščić, T., Mechanochemistry: A Force of Synthesis. ACS Central Science 2017, 3 (1), 13-19.
56. Mottillo, C.; Friščić, T., Advances in Solid-State Transformations of Coordination Bonds: From the Ball Mill to the Aging Chamber. Molecules 2017, 22 (1), 144.
57. Beldon, P. J.; Fábián, L.; Stein, R. S.; Thirumurugan, A.; Cheetham, A. K.; Friščić, T., Rapid Room‐Temperature Synthesis of Zeolitic Imidazolate Frameworks by Using Mechanochemistry. Angewandte Chemie International Edition 2010, 49 (50), 9640-9643.
58. Crawford, D.; Casaban, J.; Haydon, R.; Giri, N.; McNally, T.; James, S. L., Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent. Chemical Science 2015, 6 (3), 1645-1649.
59. Katsenis, A. D.; Puškarić, A.; Štrukil, V.; Mottillo, C.; Julien, P. A.; Užarević, K.; Pham, M.-H.; Do, T.-O.; Kimber, S. A. J.; Lazić, P.; Magdysyuk, O.; Dinnebier, R. E.; Halasz, I.; Friščić, T., In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework. 2015, 6, 6662.
60. Dahl, J. A.; Maddux, B. L. S.; Hutchison, J. E., Toward Greener Nanosynthesis. Chemical Reviews 2007, 107 (6), 2228-2269.
61. Merrifield, R. B., Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. Journal of the American Chemical Society 1963, 85 (14), 2149-2154.
62. Sing, K. S. W., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry 1985, 57 (4), 603.
63. Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y.-B.; Kang, J. K.; Yaghi, O. M., Supercapacitors of Nanocrystalline Metal–Organic Frameworks. ACS Nano 2014, 8 (7), 7451-7457.
64. Shan, N.; Toda, F.; Jones, W., Mechanochemistry and co-crystal formation: effect of solvent on reaction kinetics. Chemical Communications 2002, (20), 2372-2373.
65. Uzarevic, K.; Wang, T. C.; Moon, S.-Y.; Fidelli, A. M.; Hupp, J. T.; Farha, O. K.; Friscic, T., Mechanochemical and solvent-free assembly of zirconium-based metal-organic frameworks. Chemical Communications 2016, 52 (10), 2133-2136.
66. Hasa, D.; Schneider Rauber, G.; Voinovich, D.; Jones, W., Cocrystal Formation through Mechanochemistry: from Neat and Liquid-Assisted Grinding to Polymer-Assisted Grinding. Angewandte Chemie International Edition 2015, 54 (25), 7371-7375.
67. Longstaffe, J. G.; Simpson, A. J., Understanding solution‐state noncovalent interactions between xenobiotics and natural organic matter using 19F/1H heteronuclear saturation transfer difference nuclear magnetic resonance spectroscopy. Environmental Toxicology and Chemistry 2011, 30 (8), 1745-1753.
68. Lu, P.; Wu, Y.; Kang, H.; Wei, H.; Liu, H.; Fang, M., What can pKa and NBO charges of the ligands tell us about the water and thermal stability of metal organic frameworks? Journal of Materials Chemistry A 2014, 2 (38), 16250-16267.
69. Chin, J. M.; Chen, E. Y.; Menon, A. G.; Tan, H. Y.; Hor, A. T. S.; Schreyer, M. K.; Xu, J., Tuning the aspect ratio of NH2-MIL-53(Al) microneedles and nanorods via coordination modulation. CrystEngComm 2013, 15 (4), 654-657.
70. Cravillon, J.; Nayuk, R.; Springer, S.; Feldhoff, A.; Huber, K.; Wiebcke, M., Controlling Zeolitic Imidazolate Framework Nano- and Microcrystal Formation: Insight into Crystal Growth by Time-Resolved In Situ Static Light Scattering. Chemistry of Materials 2011, 23 (8), 2130-2141.
71. Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W., Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal–Organic Framework UiO-66 and Their Important Effects on Gas Adsorption. Journal of the American Chemical Society 2013, 135 (28), 10525-10532.
72. Hou, L.; Wang, L.; Zhang, N.; Xie, Z.; Dong, D., Polymer brushes on metal-organic frameworks by UV-induced photopolymerization. Polymer Chemistry 2016, 7 (37), 5828-5834.
73. Dalvi, V. H.; Rossky, P. J., Molecular origins of fluorocarbon hydrophobicity. Proceedings of the National Academy of Sciences 2010, 107 (31), 13603-13607.
74. Vermoortele, F.; Vandichel, M.; Van de Voorde, B.; Ameloot, R.; Waroquier, M.; Van Speybroeck, V.; De Vos, D. E., Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal–Organic Frameworks. Angewandte Chemie International Edition 2012, 51 (20), 4887-4890.
75. Huang, Y.-H.; Lo, W.-S.; Kuo, Y.-W.; Chen, W.-J.; Lin, C.-H.; Shieh, F.-K., Green and rapid synthesis of zirconium metal-organic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds. Chemical Communications 2017, 53 (43), 5818-5821.
76. Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.-C., Enzyme-MOF (metal-organic framework) composites. Chemical Society Reviews 2017, DOI:10.1039/C7CS00058H.
77. Hu, P.; Zhuang, J.; Chou, L.-Y.; Lee, H. K.; Ling, X. Y.; Chuang, Y.-C.; Tsung, C.-K., Surfactant-Directed Atomic to Mesoscale Alignment: Metal Nanocrystals Encased Individually in Single-Crystalline Porous Nanostructures. Journal of the American Chemical Society 2014, 136 (30), 10561-10564.
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2017-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明