參考文獻 |
[1] Green, M.A., K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop," Solar cell efficiency tables (Version 45)". Progress in Photovoltaics: Research and Applications, 2015. 23(1): p. 1-9.
[2] Chen, C.-C., W.-H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong, and Y. Yang," An Efficient Triple-Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11%". Advanced Materials, 2014. 26(32): p. 5670-5677.
[3] O′Regan, B. and M. Gratzel," A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films". Nature, 1991. 353(6346): p. 737-740.
[4] K. Nazeeruddin, M., P. Pechy, and M. Gratzel," Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex". Chemical Communications, 1997(18): p. 1705-1706.
[5] Nazeeruddin, M.K., A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel," Conversion of light to electricityby cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes". Journal of the American Chemical Society, 1993. 115(14): p. 6382-6390.
[6] Magne, C., M. Urien, and T. Pauporté," Enhancement of photovoltaic performances in dye-sensitized solar cells by co-sensitization with metal-free organic dyes". Rsc Advances, 2013. 3(18): p. 6315-6318.
[7] Kakiage, K., Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa, and M. Hanaya," Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes". Chemical Communications, 2015. 51(88): p. 15894-15897.
[8] Toyoda, T., T. Sano, J. Nakajima, S. Doi, S. Fukumoto, A. Ito, T. Tohyama, M. Yoshida, T. Kanagawa, T. Motohiro, T. Shiga, K. Higuchi, H. Tanaka, Y. Takeda, T. Fukano, N. Katoh, A. Takeichi, K. Takechi, and M. Shiozawa," Outdoor performance of large scale DSC modules". Journal of Photochemistry and Photobiology A: Chemistry, 2004. 164(1–3): p. 203-207.
[9] El-shaer, A., M. Tadros, and M. Khalifa," Effect of Light intensity and Temperature on Crystalline Silicon Solar Modules Parameters". International Journal of Emerging Technology and Advanced Engineering, 2014. 4(8).
[10] Lee, C.-P., C.-A. Lin, T.-C. Wei, M.-L. Tsai, Y. Meng, C.-T. Li, K.-C. Ho, C.-I. Wu, S.-P. Lau, and J.-H. He," Economical low-light photovoltaics by using the Pt-free dye-sensitized solar cell with graphene dot/PEDOT:PSS counter electrodes". Nano Energy, 2015. 18: p. 109-117.
[11] Kojima, A., K. Teshima, Y. Shirai, and T. Miyasaka," Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells". Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051.
[12] Kim, H.-S., C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, and N.-G. Park," Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%". Scientific Reports, 2012. 2: p. 591.
[13] Lee, M.M., J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith," Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites". Science, 2012. 338(6107): p. 643.
[14] Liu, M., M.B. Johnston, and H.J. Snaith," Efficient planar heterojunction perovskite solar cells by vapour deposition". Nature, 2013. 501(7467): p. 395-398.
[15] Green, M.A., A. Ho-Baillie, and H.J. Snaith," The emergence of perovskite solar cells". Nat Photon, 2014. 8(7): p. 506-514.
[16] Miyata, A., A. Mitioglu, P. Plochocka, O. Portugall, J.T.-W. Wang, S.D. Stranks, H.J. Snaith, and R.J. Nicholas," Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites". Nat Phys, 2015. 11(7): p. 582-587.
[17] Stranks, S.D., G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith," Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber". Science, 2013. 342(6156): p. 341.
[18] Eperon, G.E., S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, and H.J. Snaith," Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells". Energy & Environmental Science, 2014. 7(3): p. 982-988.
[19] Stranks, S.D. and H.J. Snaith," Metal-halide perovskites for photovoltaic and light-emitting devices". Nat Nano, 2015. 10(5): p. 391-402.
[20] Gratzel, M.," The light and shade of perovskite solar cells". Nat Mater, 2014. 13(9): p. 838-842.
[21] Wang, Z., Z. Shi, T. Li, Y. Chen, and W. Huang," Stability of Perovskite Solar Cells: A Prospective on the Substitution of the A Cation and X Anion". Angewandte Chemie International Edition, 2016.
[22] Giustino, F. and H.J. Snaith," Toward Lead-Free Perovskite Solar Cells". ACS Energy Letters, 2016. 1(6): p. 1233-1240.
[23] Eperon, G.E., T. Leijtens, K.A. Bush, R. Prasanna, T. Green, J.T.-W. Wang, D.P. McMeekin, G. Volonakis, R.L. Milot, R. May, A. Palmstrom, D.J. Slotcavage, R.A. Belisle, J.B. Patel, E.S. Parrott, R.J. Sutton, W. Ma, F. Moghadam, B. Conings, A. Babayigit, H.-G. Boyen, S. Bent, F. Giustino, L.M. Herz, M.B. Johnston, M.D. McGehee, and H.J. Snaith," Perovskite-perovskite tandem photovoltaics with optimized band gaps". Science, 2016. 354(6314): p. 861-865.
[24] Jesper Jacobsson, T., J.-P. Correa-Baena, M. Pazoki, M. Saliba, K. Schenk, M. Gratzel, and A. Hagfeldt," Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells". Energy & Environmental Science, 2016. 9(5): p. 1706-1724.
[25] Jeon, N.J., J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok," Compositional engineering of perovskite materials for high-performance solar cells". Nature, 2015. 517(7535): p. 476-480.
[26] Zhang, H., J. Shi, X. Xu, L. Zhu, Y. Luo, D. Li, and Q. Meng," Mg-doped TiO2 boosts the efficiency of planar perovskite solar cells to exceed 19%". Journal of Materials Chemistry A, 2016. 4(40): p. 15383-15389.
[27] Kim, H., K.-G. Lim, and T.-W. Lee," Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers". Energy & Environmental Science, 2016. 9(1): p. 12-30.
[28] Li, C.-Z., H.-L. Yip, and A.K.Y. Jen," Functional fullerenes for organic photovoltaics". Journal of Materials Chemistry, 2012. 22(10): p. 4161-4177.
[29] Yip, H.-L. and A.K.Y. Jen," Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells". Energy & Environmental Science, 2012. 5(3): p. 5994-6011.
[30] Chueh, C.-C., C.-Z. Li, and A.K.Y. Jen," Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells". Energy & Environmental Science, 2015. 8(4): p. 1160-1189.
[31] Liu, Y., L.A. Renna, M. Bag, Z.A. Page, P. Kim, J. Choi, T. Emrick, D. Venkataraman, and T.P. Russell," High Efficiency Tandem Thin-Perovskite/Polymer Solar Cells with a Graded Recombination Layer". ACS Applied Materials & Interfaces, 2016. 8(11): p. 7070-7076.
[32] Liu, T., K. Chen, Q. Hu, R. Zhu, and Q. Gong," Inverted Perovskite Solar Cells: Progresses and Perspectives". Advanced Energy Materials, 2016. 6(17): p. 1600457-n/a.
[33] Meng, L., J. You, T.-F. Guo, and Y. Yang," Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells". Accounts of Chemical Research, 2016. 49(1): p. 155-165.
[34] Jeng, J.-Y., Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, and T.-C. Wen," CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells". Advanced Materials, 2013. 25(27): p. 3727-3732.
[35] Jeon, N.J., J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, and S.I. Seok," Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells". Nat Mater, 2014. 13(9): p. 897-903.
[36] Hu, L., W. Wang, H. Liu, J. Peng, H. Cao, G. Shao, Z. Xia, W. Ma, and J. Tang," PbS colloidal quantum dots as an effective hole transporter for planar heterojunction perovskite solar cells". Journal of Materials Chemistry A, 2015. 3(2): p. 515-518.
[37] Kulkarni, S.A., T. Baikie, P.P. Boix, N. Yantara, N. Mathews, and S. Mhaisalkar," Band-gap tuning of lead halide perovskites using a sequential deposition process". Journal of Materials Chemistry A, 2014. 2(24): p. 9221-9225.
[38] Chen, Q., H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang," Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process". Journal of the American Chemical Society, 2014. 136(2): p. 622-625.
[39] Bi, C., Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, and J. Huang," Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells". Nature Communications, 2015. 6: p. 7747.
[40] Salim, T., S. Sun, Y. Abe, A. Krishna, A.C. Grimsdale, and Y.M. Lam," Perovskite-based solar cells: impact of morphology and device architecture on device performance". Journal of Materials Chemistry A, 2015. 3(17): p. 8943-8969.
[41] Wu, Y., A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, and L. Han," Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition". Energy & Environmental Science, 2014. 7(9): p. 2934-2938.
[42] Chae, J., Q. Dong, J. Huang, and A. Centrone," Chloride Incorporation Process in CH(3)NH(3)PbI(3-x)Cl(x) Perovskites via Nanoscale Bandgap Maps". Nano letters, 2015. 15(12): p. 8114-8121.
[43] Ahn, N., D.-Y. Son, I.-H. Jang, S.M. Kang, M. Choi, and N.-G. Park," Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide". Journal of the American Chemical Society, 2015. 137(27): p. 8696-8699.
[44] Ren, Y., B. Duan, Y. Xu, Y. Huang, Z. Li, L. Hu, T. Hayat, H. Wang, J. Zhu, and S. Dai," New insight into solvent engineering technology from evolution of intermediates via one-step spin-coating approach". Science China Materials, 2017. 60(5): p. 392-398.
[45] Li, Y., J. Wang, Y. Yuan, X. Dong, and P. Wang," Anti-solvent dependent device performance in CH3NH3PbI3 solar cells: the role of intermediate phase content in the as-prepared thin films". Sustainable Energy & Fuels, 2017.
[46] Yu, Y., S. Yang, L. Lei, and Y. Liu," Nucleation mediated interfacial precipitation for architectural perovskite films with enhanced photovoltaic performance". Nanoscale, 2017. 9(7): p. 2569-2578.
[47] Zhu, W., C. Bao, B. Lv, F. Li, Y. Yi, Y. Wang, J. Yang, X. Wang, T. Yu, and Z. Zou," Dramatically promoted crystallization control of organolead triiodide perovskite film by a homogeneous cap for high efficiency planar-heterojunction solar cells". Journal of Materials Chemistry A, 2016. 4(32): p. 12535-12542.
[48] Xia, B., Z. Wu, H. Dong, J. Xi, W. Wu, T. Lei, K. Xi, F. Yuan, B. Jiao, L. Xiao, Q. Gong, and X. Hou," Formation of ultrasmooth perovskite films toward highly efficient inverted planar heterojunction solar cells by micro-flowing anti-solvent deposition in air". Journal of Materials Chemistry A, 2016. 4(17): p. 6295-6303.
[49] Zhou, Y., M. Yang, O.S. Game, W. Wu, J. Kwun, M.A. Strauss, Y. Yan, J. Huang, K. Zhu, and N.P. Padture," Manipulating Crystallization of Organolead Mixed-Halide Thin Films in Antisolvent Baths for Wide-Bandgap Perovskite Solar Cells". ACS Applied Materials & Interfaces, 2016. 8(3): p. 2232-2237.
[50] Song, T.-B., Q. Chen, H. Zhou, C. Jiang, H.-H. Wang, Y. Yang, Y. Liu, J. You, and Y. Yang," Perovskite solar cells: film formation and properties". Journal of Materials Chemistry A, 2015. 3(17): p. 9032-9050.
[51] Kim, H.-B., H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, and J.Y. Kim," Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells". Nanoscale, 2014. 6(12): p. 6679-6683.
[52] Wu, W.-Q., D. Chen, F. Huang, Y.-B. Cheng, and R.A. Caruso," Optimizing semiconductor thin films with smooth surfaces and well-interconnected networks for high-performance perovskite solar cells". Journal of Materials Chemistry A, 2016. 4(32): p. 12463-12470.
[53] Yu, Y., S. Yang, L. Lei, Q. Cao, J. Shao, S. Zhang, and Y. Liu," Ultrasmooth Perovskite Film via Mixed Anti-Solvent Strategy with Improved Efficiency". ACS Applied Materials & Interfaces, 2017. 9(4): p. 3667-3676.
[54] Noel, N.K., S.N. Habisreutinger, B. Wenger, M.T. Klug, M.T. Horantner, M.B. Johnston, R.J. Nicholas, D.T. Moore, and H.J. Snaith," A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films". Energy & Environmental Science, 2017. 10(1): p. 145-152.
[55] Moon, S.J., J.H. Yum, L. Löfgren, A. Walter, L. Sansonnens, M. Benkhaira, S. Nicolay, J. Bailat, and C. Ballif," Laser-Scribing Patterning for the Production of Organometallic Halide Perovskite Solar Modules". IEEE Journal of Photovoltaics, 2015. 5(4): p. 1087-1092.
[56] Kumar, C.V., G. Sfyri, D. Raptis, E. Stathatos, and P. Lianos," Perovskite solar cell with low cost Cu-phthalocyanine as hole transporting material". RSC Advances, 2015. 5(5): p. 3786-3791.
[57] Matteocci, F., S. Razza, F. Di Giacomo, S. Casaluci, G. Mincuzzi, T.M. Brown, A. D′Epifanio, S. Licoccia, and A. Di Carlo," Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process". Physical Chemistry Chemical Physics, 2014. 16(9): p. 3918-3923.
[58] Seo, J., S. Park, Y. Chan Kim, N.J. Jeon, J.H. Noh, S.C. Yoon, and S.I. Seok," Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells". Energy & Environmental Science, 2014. 7(8): p. 2642-2646.
[59] Eperon, G.E., V.M. Burlakov, P. Docampo, A. Goriely, and H.J. Snaith," Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells". Advanced Functional Materials, 2014. 24(1): p. 151-157.
[60] Barrows, A.T., A.J. Pearson, C.K. Kwak, A.D.F. Dunbar, A.R. Buckley, and D.G. Lidzey," Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition". Energy & Environmental Science, 2014. 7(9): p. 2944-2950.
[61] Manser, J.S., M.I. Saidaminov, J.A. Christians, O.M. Bakr, and P.V. Kamat," Making and Breaking of Lead Halide Perovskites". Accounts of Chemical Research, 2016. 49(2): p. 330-338.
[62] Dai, S., K. Wang, J. Weng, Y. Sui, Y. Huang, S. Xiao, S. Chen, L. Hu, F. Kong, X. Pan, C. Shi, and L. Guo," Design of DSC panel with efficiency more than 6%". Solar Energy Materials and Solar Cells, 2005. 85(3): p. 447-455.
[63] Jaegermann, W., A. Klein, and T. Mayer," Interface Engineering of Inorganic Thin-Film Solar Cells – Materials-Science Challenges for Advanced Physical Concepts". Advanced Materials, 2009. 21(42): p. 4196-4206.
[64] Thompson, C.V.," Solid-State Dewetting of Thin Films". Annual Review of Materials Research, 2012. 42(1): p. 399-434.
[65] Liu, J., Y. Wu, C. Qin, X. Yang, T. Yasuda, A. Islam, K. Zhang, W. Peng, W. Chen, and L. Han," A dopant-free hole-transporting material for efficient and stable perovskite solar cells". Energy & Environmental Science, 2014. 7(9): p. 2963-2967.
[66] Azhar, F., L.P. Alessandro, G. Francesco Di, C. Simone, M. Fabio, W. Qamar, R. Muhammad, C. Aldo Di, M.B. Thomas, and J. Rajan," Solid state perovskite solar modules by vacuum-vapor assisted sequential deposition on Nd:YVO 4 laser patterned rutile TiO 2 nanorods". Nanotechnology, 2015. 26(49): p. 494002.
[67] Di Giacomo, F., V. Zardetto, A. D′Epifanio, S. Pescetelli, F. Matteocci, S. Razza, A. Di Carlo, S. Licoccia, W.M.M. Kessels, M. Creatore, and T.M. Brown," Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV-Irradiated TiO2 Scaffolds on Plastic Substrates". Advanced Energy Materials, 2015. 5(8): p. 1401808-n/a.
[68] Hwang, K., Y.-S. Jung, Y.-J. Heo, F.H. Scholes, S.E. Watkins, J. Subbiah, D.J. Jones, D.-Y. Kim, and D. Vak," Toward Large Scale Roll-to-Roll Production of Fully Printed Perovskite Solar Cells". Advanced Materials, 2015. 27(7): p. 1241-1247.
[69] Schmidt, T.M., T.T. Larsen-Olsen, J.E. Carlé, D. Angmo, and F.C. Krebs," Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodes". Advanced Energy Materials, 2015. 5(15): p. 1500569-n/a.
[70] Razza, S., F. Di Giacomo, F. Matteocci, L. Cinà, A.L. Palma, S. Casaluci, P. Cameron, A. D′Epifanio, S. Licoccia, A. Reale, T.M. Brown, and A. Di Carlo," Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process". Journal of Power Sources, 2015. 277: p. 286-291.
[71] Vak, D., K. Hwang, A. Faulks, Y.-S. Jung, N. Clark, D.-Y. Kim, G.J. Wilson, and S.E. Watkins," 3D Printer Based Slot-Die Coater as a Lab-to-Fab Translation Tool for Solution-Processed Solar Cells". Advanced Energy Materials, 2015. 5(4): p. 1401539-n/a.
[72] Gouda, L., R. Gottesman, S. Tirosh, E. Haltzi, J. Hu, A. Ginsburg, D.A. Keller, Y. Bouhadana, and A. Zaban," Vapor and healing treatment for CH3NH3PbI3-xClx films toward large-area perovskite solar cells". Nanoscale, 2016. 8(12): p. 6386-6392.
[73] Agresti, A., S. Pescetelli, A.L. Palma, A.E. Del Rio Castillo, D. Konios, G. Kakavelakis, S. Razza, L. Cinà, E. Kymakis, F. Bonaccorso, and A. Di Carlo," Graphene Interface Engineering for Perovskite Solar Modules: 12.6% Power Conversion Efficiency over 50 cm2 Active Area". ACS Energy Letters, 2017. 2(1): p. 279-287.
[74] Zhao, Y. and K. Zhu," Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells". The Journal of Physical Chemistry Letters, 2014. 5(23): p. 4175-4186.
[75] Seo, H., M.-K. Son, J.-K. Kim, J. Choi, S. Choi, S.-K. Kim, and H.-J. Kim," Analysis of current loss from a series-parallel combination of dye-sensitized solar cells using electrochemical impedance spectroscopy". Photonics and Nanostructures - Fundamentals and Applications, 2012. 10(4): p. 568-574.
[76] Im, J.-H., I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park," Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells". Nat Nano, 2014. 9(11): p. 927-932.
[77] Zhou, Y., M. Yang, A.L. Vasiliev, H.F. Garces, Y. Zhao, D. Wang, S. Pang, K. Zhu, and N.P. Padture," Growth control of compact CH3NH3PbI3 thin films via enhanced solid-state precursor reaction for efficient planar perovskite solar cells". Journal of Materials Chemistry A, 2015. 3(17): p. 9249-9256.
[78] Hao, F., C.C. Stoumpos, P. Guo, N. Zhou, T.J. Marks, R.P.H. Chang, and M.G. Kanatzidis," Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells". Journal of the American Chemical Society, 2015. 137(35): p. 11445-11452.
[79] Chern, Y.-C., H.-R. Wu, Y.-C. Chen, H.-W. Zan, H.-F. Meng, and S.-F. Horng," Reliable solution processed planar perovskite hybrid solar cells with large-area uniformity by chloroform soaking and spin rinsing induced surface precipitation". AIP Advances, 2015. 5(8): p. 087125.
[80] Nie, W., H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, and A.D. Mohite," High-efficiency solution-processed perovskite solar cells with millimeter-scale grains". Science, 2015. 347(6221): p. 522-525.
[81] Zhou, Y., M. Yang, W. Wu, A.L. Vasiliev, K. Zhu, and N.P. Padture," Room-temperature crystallization of hybrid-perovskite thin films via solvent-solvent extraction for high-performance solar cells". Journal of Materials Chemistry A, 2015. 3(15): p. 8178-8184.
[82] Liu, J., C. Gao, X. He, Q. Ye, L. Ouyang, D. Zhuang, C. Liao, J. Mei, and W. Lau," Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar Cell". ACS Applied Materials & Interfaces, 2015. 7(43): p. 24008-24015.
[83] Li, C., J. Sleppy, N. Dhasmana, M. Soliman, L. Tetard, and J. Thomas," A PCBM-assisted perovskite growth process to fabricate high efficiency semitransparent solar cells". Journal of Materials Chemistry A, 2016. 4(30): p. 11648-11655.
[84] Chiang, C.-H. and C.-G. Wu," Bulk heterojunction perovskite–PCBM solar cells with high fill factor". Nat Photon, 2016. 10(3): p. 196-200.
[85] Zhang, F., W. Shi, J. Luo, N. Pellet, C. Yi, X. Li, X. Zhao, T.J.S. Dennis, X. Li, S. Wang, Y. Xiao, S.M. Zakeeruddin, D. Bi, and M. Grätzel," Isomer-Pure Bis-PCBM-Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability". Advanced Materials, 2017. 29(17): p. 1606806-n/a.
[86] Wu, Y., X. Yang, W. Chen, Y. Yue, M. Cai, F. Xie, E. Bi, A. Islam, and L. Han," Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering". Nature Energy, 2016. 1: p. 16148.
[87] Kim, H.-S. and N.-G. Park," Parameters Affecting I–V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer". The Journal of Physical Chemistry Letters, 2014. 5(17): p. 2927-2934.
[88] Tress, W., N. Marinova, T. Moehl, S.M. Zakeeruddin, M.K. Nazeeruddin, and M. Gratzel," Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field". Energy & Environmental Science, 2015. 8(3): p. 995-1004.
[89] Yin, X., Z. Yao, Q. Luo, X. Dai, Y. Zhou, Y. Zhang, Y. Zhou, S. Luo, J. Li, N. Wang, and H. Lin," High Efficiency Inverted Planar Perovskite Solar Cells with Solution-Processed NiOx Hole Contact". ACS Applied Materials & Interfaces, 2017. 9(3): p. 2439-2448.
[90] Nguyen, W.H., C.D. Bailie, E.L. Unger, and M.D. McGehee," Enhancing the Hole-Conductivity of Spiro-OMeTAD without Oxygen or Lithium Salts by Using Spiro(TFSI)2 in Perovskite and Dye-Sensitized Solar Cells". Journal of the American Chemical Society, 2014. 136(31): p. 10996-11001. |