博碩士論文 104324018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.147.13.185
姓名 羅士庭(Shih-Ting Luo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 金屬與鹵素前驅物對富含氮奈米碳材製備與拉曼光譜增強基材之影響
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板
★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用
★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用
★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 首先本研究以聚4乙烯吡啶(poly(4-vinylpyridine), P4VP)經熱燒結後製備出富含氮碳材,將其應用於作為表面拉曼光譜訊號增強(surface-enhanced Raman scattering, SERS)基材後,觀察到其增強訊號的能力良好。探討聚4乙烯吡啶經一系列熱燒結溫度下製備樣品的氮摻雜組態後,發現氮組態中的四級氮(graphitic-N)比例隨燒結溫度升高而增加,此時最高占據分子軌域和最低未占據分子軌域間能隙(HOMO-LUMO gap)降低,電荷傳遞能力(charge transfer)提升,同時四級氮周圍的碳上有很高的區域電子雲密度(charge density)使富含氮碳材帶有更高的極性,則富含氮碳材與分子間的偶極-偶極力(dipole-dipole interaction)也會提升,最終作為表面拉曼光譜訊號增強基材的能力也跟著提升。

接下來由於聚4乙烯吡啶(P4VP)的熱燒結溫度已達臨界點,利用前驅物降低聚4乙烯吡啶(P4VP)熱穩定性,即以金屬為前驅物製備高分子薄膜後,經熱燒結製備一系列金屬摻雜富含氮碳材。期望藉由金屬離子摻雜,製備出具金屬與氮鍵結的拉曼光譜訊號增強能力的基材。藉由Near Edge Absorption X-ray Fine Structure(NEAXFS)觀察後,發現金屬摻雜後改變氮元素組態而且最高佔據分子軌域與最低未佔據分子軌域間能隙(HOMO-LUMO gap)降低,電荷傳遞能力(charge transfer)提升,最終得到具有明顯表面拉曼光譜訊號提升的金屬摻雜富含氮碳材,以金屬為前驅物製備之富含氮碳材的表面拉曼光譜訊號能力相較於原先的富含氮碳材之效果提升許多。

最後探討鹵素摻雜於富含氮碳材後提升表面拉曼光譜訊號增強能力的可能性。以聚4乙烯吡啶(poly(4-vinylpyridine), P4VP)製備高分子薄膜後,於鹵素摻雜後經熱燒結製備鹵素摻雜富含氮碳材。發現到鹵素離子摻雜後形成鹵素與氮鍵結使周圍碳材帶有更強的正電荷密度而更容易吸引電子而提升電荷傳遞能力,同時鹵素離子的極性也提升了分子與基材間的偶極-偶極力,使表面拉曼光譜訊號增強能力更好。而於熱燒結前進行鹵素摻雜,除了鹵素離子的貢獻外,鹵素摻雜後的樣品熱裂解溫度下降而導致在相同溫度下燒結時,碳化程度較未摻雜的樣品提升也是使表面拉曼光譜訊號增強能力更好的原因之一。
摘要(英)

Nitrogen-enriched carbon materials could be fabricated by thermal pyrolysis of poly(4-vinylpyridine) thin film. By using the nitrogen-enriched carbon materials as surface-enhanced Raman scattering substrates, the excellent enhancement of Raman signal is observed. From the analysis of nitrogen configurations for nitrogen species for nitrogen-enriched carbon materials, the proportion of graphitic-N depends on pyrolysis temperature. Due to the fact that the presence of graphitic-N could reduce the band gap, graphitic-N could favor charge transfer between the substrate and the molecule. Due to different electronegativity between carbon and nitrogen, positive high charge densities could be present on the carbons neighboring to graphitic-N, which may result in dipole-dipole interactions between the substrate and the molecule. As a result, the ability of surface-enhanced Raman scattering substrate can be finely determined by pyrolysis temperature.

In order to improve the ability of surface enhance Raman scattering, we use the metal as precursor to fabricate nitrogen-enriched carbon nanosheets through thermal pyrolysis of homopolymer poly(4-vinylpyridine). With Near Edge Absorption X-ray Fine Structure (NEAXFS) characterization for nitrogen-enriched carbon nanosheets, the configurations of nitrogen within nitrogen-enriched carbon nanomaterials are changed. As a result, graphitic-N and metal-N promote the better ability of surface-enhanced Raman scattering.

In the last part, halogen doping was applied to improve the ability of surface-enhanced Raman scattering substrate. Halogen doping was first imposed on P4VP homopolymers and then thermal pyrolysis was carried out. We successfully fabricate halogen-doped within nitrogen enriched carbon nanosheets, which show improved Raman scattering intensity enhancement. From the analysis of nitrogen configurations, halogen-nitrogen bonds were found. The halogen-nitrogen bonds could induce more positive charges on carbons that promote the charge transfer ability between substrate and molecule. The polarity of halogen promotes dipole-dipole interactions between substrate and molecule. As a result, halogen doping indeed improves the ability of surface-enhanced Raman scattering substrate. Additionally, carbonization could generate nanosheets with high crystallinity. As a result, such carbon nanosheets show improvement of Raman scattering intensity of adsorbed dye molecules.
關鍵字(中) ★ 高分子
★ 拉曼
關鍵字(英)
論文目次
摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 ix
表目錄 xiv
Chapter 1 序論 1
1-1 拉曼光譜學 1
1-2 表面拉曼光譜訊號增強原理 3
1-2-1 電磁場增強機制 4
1-2-2 化學增強機制 5
1-3 石墨烯作為表面拉曼光譜訊號增強基材 7
1-4 以氮摻雜石墨烯作為表面拉曼光譜訊號增強基材 9
1-4-1 氮摻雜石墨烯作為表面拉曼光譜訊號增強基材能力 9
1-4-2 氮組態對表面拉曼光譜訊號增強影響 11
1-5 含氮高分子製備氮摻雜石墨 13
1-6 其他元素摻雜對表面拉曼光譜訊號增強影響 16
1-6-1 接觸表面對表面拉曼光譜訊號增強影響 16
1-6-2 其他元素摻雜對表面拉曼光譜訊號增強影響 18
1-7 實驗動機 20
Chapter 2 實驗方法 21
2-1 實驗藥品與基材 21
2-2 樣品製備 23
2-2-1 基材清潔 23
2-2-2 製備金屬摻雜富含氮碳材 23
2-2-3 製備鹵素摻雜富含氮碳材 23
2-3 實驗使用儀器 24
2-3-1 顯微影像觀察 25
2-3-2 X光吸收近邊緣結構 26
2-3-3 熱重分析儀量測燒結過程重量變化 27
2-3-4 紫外光可見光光譜儀 27
2-3-5 拉曼光譜儀 27
2-3-6 X射線光電子能譜儀 28
2-3-7 拉曼光譜儀訊號計算增強因子分析 28
2-3-8 從紫外光可見光光譜儀量測結果計算HOMO-LUMO gap 29
2-3-9 X光粉末繞射 30
Chapter 3 結果與討論 31
3-1 金屬摻雜富含氮碳材製備與表面拉曼光譜訊號增強能力 31
3-1-1 金屬摻雜富含氮碳材製備與組成 31
3-1-2 金屬摻雜富含氮碳材作為表面拉曼光譜訊號增強基材能力 37
3-1-3 各金屬摻雜富含氮碳材中四級氮比例與電荷傳遞能力關係 40
3-1-4 燒結溫度對表面拉曼光譜訊號增強能力關係 48
3-2 鹵素摻雜富含氮碳材製備與表面拉曼光譜訊號增強能力 51
3-2-1 鹵素摻雜富含氮碳材製備與形貌 51
3-2-2 鹵素摻雜富含氮碳材作為表面拉曼光譜訊號增強基材能力 55
3-2-3 鹵素摻雜富含氮碳材組成與表面拉曼光譜訊號增強能力關係 57
結論 65
參考資料 66
附錄 73
參考文獻

1. Gardiner, D., Graves, R., “Practical Raman Spectroscopy”, Springer-Verlag, 1989.
2. Placzek, G., “Rayleigh Streuung und Raman Effekt”, In: Hdb. der Radiologie, 1934, VI, 2, 209.
3. Murphy, S., Huang, L., Kamat, P., “Charge-transfer Complexation and Excited-state Interactions in Porphyrin-silver Nanoparticle Hybrid Structures”, J. Phys. Chem. C, 2011, 115, 46, 22761–22769.
4. Fleischmann, M., Hendra, P. J., McQuillan, A. J., “Raman Spectra of Pyridine Adsorbed at a Silver Electrode”, Chem. Phys. Lett., 1974, 26, 163-166.
5. Otto, A., Mrozek, I., Grabhorn, H., Akemann, W., “Surface-enhanced Raman Scattering”, J. Phys. Condens. Matter, 1992, 4, 1143-1212.
6. Campion, A., Kambhampati, P., “Surface-enhanced Raman Scattering”, Chem. Soc. Rev., 1998, 27, 241-250.
7. McLellan, J., Li Z., Siekkinen A., Xia Y., “The SERS Activity of a Supported Ag Nanocube Strongly Depends on Its Orientation Relative to Laser Polarization”, Nano Lett., 2007, 7, 4, 1013-1017.
8. Taylor, C., Pemberton, J., Goodman, G., Schoenfisch, M., “Surface Enhancement Factors for Ag and Au Surfaces Relative to Pt Surfaces for Monolayers of Thiophenol”, Applied Spectroscopy, 1999, 53, 10, 1212-1221.
9. Bottcher, C., “In Theory of Electric Polarization”, Elsevier: Amsterdam, 1973, 17-26.
10. Yu, X., Cai, H., Zhang, W., Li, X., Pan, N., Luo, Y., Wang, X., Hou, J. G., “Tuning Chemical Enhancement of SERS by Controlling the Chemical Reduction of Graphene Oxide Nanosheets”, ACS Nano, 2011, 5, 2, 952-958.
11. Xie, L., Ling, X., Fang, Y., Zhang, J., Liu, Z., “Graphene as a Substrate to Suppress Fluorescence in Resonance Raman Spectroscopy”, J. Am. Chem. Soc., 2009, 131, 9890-9891.
12. Ling, X., Xie, L., Fang, Y., Xu, H., Zhang, H., Kong, J., Dresselhaus, M. S., Zhang, J., Liu, Z., “Can Graphene be used as a Substrate for Raman Enhancement”, Nano Lett., 2010, 10, 553-561.
13. Rana, F., “Graphene Terahertz Plasmon Oscillators”, IEEE Trans. Nanotechnol., 2008, 7, 91–99.
14. Lv, R., Li, Q., Botello-Me´ndez, A., Hayashi, T., Wang, B., Berkdemir, A., Hao, Q., Elı´as, A., Cruz-Silva, R., Gutie´rrez, H., Kim, Y., Muramatsu, H., Zhu, J., Endo, M., Terrones, H., Charlier, J., Pan, M., Terrones, M., “Nitrogen-doped Graphene: Beyond Single Substitution and Enhanced Molecular Sensing”, Scientific Reports, 2012, 2, 586.
15. Xu, H., Xie, L., Zhang, H., Zhang, J., “Effect of Graphene Fermi Level on the Raman Scattering Intensity of Molecules on Graphene”, ACS Nano, 2011, 5, 7, 5338-5344.
16. Wu, P., Qian, Y., Du, P., Zhang, H., Cai, C., “Facile Synthesis of Nitrogen-doped Graphene for Measuring the Releasing Process of Hydrogen Peroxide from Living Cells”, Journal of Materials Chemistry, 2012, 22, 6402-6412.
17. Hung, C., Yu, N., Chen, C., Wu, P., Han, X., Kao, Y., Liu, T., Chu, Y., Deng, F., Zheng, A., Liu, S., “Highly Nitrogen-doped Mesoscopic Carbons as Efficient Metal-free Electrocatalysts for Oxygen Reduction Reactions”, J. Mater. Chem. A, 2014, 2, 20030-20037.
18. Forster, S., Antonietti, M., “Amphiphilic Block Copolymers in Structure-Controlled Nanomaterial Hybrids”, Adv. Mater., 1998, 10, 195-217.
19. Cheng, J., Ross, C., Chan, V., Thomas, E., Lammertink, R., Vancso, G., “Formation of a Cobalt Magnetic Dot Array via Block Copolymer Lithography”, Advanced Materials, 2001, 13, 1174-1178.
20. Lynd, N., Meuler, A., Hillmyer, M., “Polydispersity and Block Copolymer Self-assembly”, Progress in Polymer Science, 2008, 33, 875-893.
21. Zhong, M., Kim, E., McGann, J., Chun, S., Whitacre, J., Jaroniec, M., Matyjaszewski, K., Kowalewski, T., “Electrochemically Active Nitrogen-Enriched Nanocarbons with Well-Defined Morphology Synthesized by Pyrolysis of Self-Assembled Block Copolymer”, Journal of the American Chemical Society, 2012, 134, 14846-14857.
22. Ling, X., Zhang, J., “First-Layer Effect in Graphene-Enhanced Rama Scattering”, Small, 2010, 6, 18, 2020-2025.
23. Choudhury, D., Das, B., Sarma, D., Rao, C., “XPS Evidence for Molecular Charge-Transfer Doping of Graphene”, Chem. Phys. Lett., 2010, 497, 66-69.
24. Huh, S., Park, J., Kim, Y., Kim, K., Hong, B., Nam, J., “UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering”, ACS Nano, 2011, 5, 12, 9799-9806.
25. Yao, Z., Nie, H., Yang, Z., Zhou, X., Liu, Z., Huang, S., “Catalyst-free synthesis of Iodine-doped Graphene via a Facile Thermal Anneal Process and its Use for Electrocatalytic Oxygen Reduction in an Alkaline Medium”, Chem. Commun., 2012, 48, 1027-1029.
26. Šimek, P., Klímová, K., Sedmidubský, D., Jankovský, O., Pumerab, M., Sofer, Z., “Towards Graphene Iodide: Iodination of Graphite Oxide”, Nanoscale, 2015, 7, 261-270.
27. Harnish, B., Robinson, J., Pei, Z., Ramstrom, O., Yan, M., “UV-Cross-Linked Poly(vinylpyridine) Thin Films as Reversibly Responsive Surfaces”, Chem., Mater., 2005, 17, 4092-4096.
28. Wei, X.; Zhou, Y.; Li, Y.; Shen, W. “Polymorphous Transformation of Rod-Shaped Iron Oxides and Their Catalytic Properties in Selective Reduction of NO by NH3”, RSC Adv., 2015, 5, 66141-66146.
29. Zoe S., Ashleigh E. D., Martin J. H., Brian R. P., Claire A. M., Chiu C. T., “In Situ Synchrotron X‑ray Diffraction Study of the Sol−Gel Synthesis of Fe3N and Fe3C”, Chem. Mater., 2015, 27, 5094-5099.
30. Han, R., Li, W., Pan, W.W., Zhu, M., Zhou, D., Li, F.S., “1D Magnetic Materials of Fe3O4 and Fe with High Performance of Microwave Absorption Fabricated by Electrospinning Method”, Scientific Reports, 2014, vol 4, 7493.
31. Yang, X., Chen, W., Huang, J., Zhou, Y., Zhu, Y., Li, C., “Rapid degradation of methylene blue in a novel heterogeneous Fe3O4@rGO@TiO2-catalyzed photo-Fenton system”, Scientific Reports, 2015, vol 5, 10632.
32. Schniepp, H., Li, J., McAllister, M., Sai, H., Herrera-Alonso, M., Adamson, D., Pruı¨homme, R., Car, R., Saville, D., Aksay, I., “Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide”, J. Phys. Chem. B, 2006, 110, 8535-8539.
33. Kovalevski, V., Safronov, A., “Pyrolysis of Hollow Carbon on metal Catalyst”, Carbon, 1998, 36, 7-8, 963-968.
34. Arrigo, R., Havecker, M., Schlogl, R., Su, D., “Dynamic Surface Rearrangement and Thermal Stability of Nitrogen Functional Groups on Carbon Nanotubes”, Chemical Communications, 2008, 4891-4893.
35. Shao, Y., Zhang, S., Engelhard, M., Li, G., Shao, G., Wang, Y., Liu, J., Aksay, I., Lin, Y., “Nitrogen-doped Graphene and its Electrochemical Applications”, Journal of Materials Chemistry, 2010, 20, 7491-7496.
36. He, T., Li, Z., Sun, Z., Chen, S., Shen, R., Yi, L., Deng, L., Yang, M., Liu, H., Zhang, Y., “From supramolecular hydrogels to functional aerogels: a facile strategy to fabricate Fe3O4/N-doped graphene composites”, RSC Adv., 2015, 5, 77296-77302.
37. Peak, D.; Regier, T., “Direct Observation of Tetrahedrally Coordinated Fe(III) in Ferrihydrite”, Environ. Sci. Technol., 2012, 46, 3163-3168.
38. Bhattacharyya, S., Lübbe, M., Bressler, P. R., Zahn, D. R. T., Richter, F., “Structure of Nitrogenated Amorphous Carbon Films from NEXAFS”, Diamond Relat. Mater., 2002, 11, 8-15.
39. Zhong, J., Deng, J. J., Mao, B. H., Xie, T., Sun, X. H., Mou, Z. G., Hong, C. H., Yang, P., Wang, S. D., “Probing Solid State N-Doping in Graphene by X-ray Absorption Near-Edge Structure Spectroscopy”, Carbon, 2012, 50, 321-341.
40. Hellgren, N., Guo, J., Luo, Y., Sathe, C., Agui, A., Kashtanov, S., Nordgren, J., Agren, H., Sundgren, J., “Electronic structure of carbon nitride thin films studied by X-ray spectroscopy techniques”, Thin Solid Films, 2005, 471, 19-34.
41. Zhou J., Duchesne, P. N., Hu, Y., Wang, J., Zhang, P., Li, Y., Regier, T., Dai, H., “Fe-N Bonding in a Carbon Nanotube-Graphene Complex for Oxygen Reduction: an XAS Study”, Phys. Chem. Chem. Phys., 2014, 16, 15787-15791.
42. Yeh, T., Teng, C., Chen, S., Teng, H., “Nitrogen-Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Water-Splitting under Visible Light Illumination”, Adv. Mater., 2014, 26, 3297-3303.
43. Sun, Y., Huang, W., Liou, J., Lu, Y., Shih, K., Lin, C., Cheng, S., “Conversion from Self-assembled Block Copolymer Nanodomains to Carbon Nanostructures with Well-defined Morphology”, RSC Adv., 2015, 5, 105774-105784.
44. Lu, Y., Liou, J., Lin, C., Sun, Y., “Electrocatalytic Activity of a Nitrogen-enriched Mesoporous Carbon Framework and its Hybrids with Metal Nanoparticles Fabricated Through the Pyrolysis of Block Copolymers”, RSC Adv., 2015, 5, 105760-105773.
45. Sun, Y.S., Lin, C.F., Luo, S.T., Su, C.Y., “Block-Copolymer-Templated Hierarchical Porous Carbon Nanostructures with Nitrogen-Rich Functional Groups for Molecular Sensing”, ACS Appl. Mater. Interfaces, DOI: 10.1021/acsami.6b15317.
46. Santana, A., Noda, L., Pires, A., Bertolino, J., “Poly (4-vinylpyridine)/cupric Salt Complexes: Spectroscopic and Thermal Properties”, Polymer Testing, 2004, 23, 839-845.
47. Zeng, Z., Ko, T., “Structure–Conductivity Relationships of Iodine-Doped
Polyaniline”, Journal of Polymer Science: Part B: Polymer Physics, 1997, 35, 1993-2001.
48. Choi, C., Chung, M., Kwon, H., Parka, S., Woo, S., “B, N- and P, N-doped Graphene as Highly Active Catalysts for Oxygen Reduction Reactions in Acidic Media”, J. Mater. Chem. A, 2013, 1, 3694-3699.
49. Miyajima, N., Akatsu, T., Ito, O., Sakurovs, R., Shimizu, S., Sakai, M., Tanabe, Y., Yasuda, E., “The rheological behavior during carbonization of iodine-treated coal tar pitch”, Carbon, 2001, 39, 647-653.
指導教授 孫亞賢(Ya-Sen Sun) 審核日期 2017-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明