博碩士論文 104223012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.147.89.50
姓名 夏汝安(Nu-An Hsia)  查詢紙本館藏   畢業系所 化學學系
論文名稱 三維結構具官能基之中孔洞材料製備含銀鎳合金奈米顆粒於催化之應用
(Synthesis of Ag/Ni Alloy Nanoparticles Confined in Carboxylic Acid Functionalized Cubic SBA-1 Mesoporous Silica Nanoparticle as Efficient Catalysts for Reduction of 4-Nitrophenol and Degradation Reactions)
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要分為兩部分,第一部分是利用陽離子型界面活性劑Hexadecyl pyridinium chloride (CPC) 及陰離子型高分子Poly(acrylic acid) (PAA) 為模板,在鹼性環境下合成具羧酸官能基之中孔材料SBA-1,簡稱為CS-1B-x,且x = [CES / (CES + TEOS) ],修飾官能基後,仍能保有SBA-1系列的Pm3n規則結構,接著將所合成CS-1B-x吸附金屬離子,可成功還原成銀奈米金屬顆粒以及銀鎳合金奈米顆粒在此中孔材料上。在形成金屬奈米粒子的過程中,能受到孔洞大小空間之限制以及羧酸官能基之影響,其尺寸約於3 – 10 nm之間。吸附奈米金屬後,CS-1B-x材料結構也無崩解的情形發生,可以發現銀奈米粒子最佳含浸量為0.3 mmol,而銀奈米顆粒的尺寸為3.2 nm。
將此系列材料進一步應用於4-Nitrophenol之還原催化反應,並將催化數據帶入Pseudo-first order得出反應速率常數,可發現銀的奈米顆粒愈小,催化活性會有較好的表現;但當銀鎳比是6:4時其催化效果是最好的,其反應速率常數3.0 x 10-2 s-1,其催化反應在2-3分鐘便能結束。
第二部分是將此含奈米金屬之中孔材料進行染料之催化降解反應,以Methyl orange以及Rhodamine B做為示範染料進行降解,可以發現Ag06Ni04-CS-1B-10對於Methyl orange的降解能力是最好的,反應速率常數為6.9 x 10-2 s-1;而Ag08Ni02-CS-1B-10對於Rhodamine B有最高的反應速率,其反應速率常數為2.7 x 10-2 s-1。結果顯示本實驗所製備之含奈米合金之中孔洞料對於染料降解也能有非常優異的催化活性。
摘要(英)
Silver nanoparticles (Ag NPs) with a particle size about 3 nm are successfully confined within the cage-type mesopores of cubic SBA-1 mesoporous silica nanoparticles (MSNs) functionalized with carboxylic acid (-COOH) groups (CS-1B-x). Under alkaline condition of pH 9, the –COOH groups deprotonate and become -COO- groups, and thus can effectively interact with the Ag+ ions and allow facile fabrication of Ag NPs. We also used Ag+ and Ni2+ to synthesis Ag/Ni alloy incorporated in CS-1B-10. The materials were characterized by powder X-ray diffraction (XRD), solid-state 13C and 29Si MAS NMR spectroscopy, nitrogen adsorption-desorption measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS).
In the first project, the catalytic activity of these Ag NPs based SBA-1 materials were tested for reduction of 4-nitrophenol. As the catalyst for the reduction of 4-NP, the Ag-0.3-CS-1B-10 exhibit a very high catalytic activity with the activity parameter of 120 ( s-1 g-1 cat.), and Ag06Ni04-CS-1B-10 is 150 ( s-1 g-1 cat.).
Then we further used Ag/Ni alloy incorporated in CS-1B-10 for dye degradation. The degradation of methyl orange and rhodamine b follows the pseudo first order kinetics. As the catalyst for the degradation of methyl orange, Ag06Ni04-CS-1B-10 exhibits a good catalytic activity with the activity parameter of 345.0 ( s-1 g-1 cat.), also processing rhodamine b degradation by using Ag08Ni02-CS-1B-10, the activity parameter is 135.0 ( s-1 g-1 cat.). This remarkable catalytic activity for the reduction of 4-nitrophenol and degradation of methyl orange/rhodamine b can be attributed to the ultra-small Ag/Ni NPs confined in cage-type mesopores of SBA-1 MSNs, which have the particle size around 500 nm.
關鍵字(中) ★ 中孔洞材料
★ 銀鎳合金
★ 4-硝基苯酚
★ 染料降解
關鍵字(英) ★ mesoporous material
★ Ag/Ni nanoparticle
★ 4-nitrophenol
★ dye degradation
論文目次
中文摘要 i
Abstract ii
謝誌 iii
目錄 iv
圖目錄 vii
表目錄 xiii
第一章 緒論 1
1-1 中孔洞二氧化矽材料 1
1-1-1 中孔洞材料之沿革 1
1-2 界面活性劑之性質簡介 3
1-2-1 界面活性劑的種類 3
1-2-2 微胞的形成與結構 5
1-2-3 界面活性劑與矽氧化物的交互作用 7
1-3 官能基化之中孔洞材料 11
1-4 文獻回顧 13
1-4-1 中孔洞材料SBA-1之合成與介紹 13
1-4-2 以聚電解質及界面活性劑搭配合成之中孔洞材料 14
1-4-3 具羧酸官能基中孔洞材料之發展 16
1-4-4 中孔洞材料吸附金屬之應用發展 22
1-4-5 金屬奈米顆粒對4-Nitrophenol催化還原反應之簡介 27
1-4-6 金屬奈米顆粒對有機染料催化降解之簡介 39
1-5 研究動機及目的 46
第二章 實驗方法 47
2-1 實驗藥品 47
2-2 實驗步驟 49
2-2-1 合成具羧酸官能基的中孔洞SBA-1 (CS-1B-x) 49
2-2-2 以硝酸溶液裂解孔洞中的模板 49
2-2-3 CS-1B-x吸附銀金屬製備奈米銀金屬顆粒(Ag-y-CS-1B-x) 50
2-2-4 利用CS-1B-10同時吸附銀及鎳金屬製備銀鎳合金內嵌在中孔洞SBA-1中(AgzNi1-z-CS-1B-10) 50
2-2-5 材料對4-Nitrophenol進行催化還原反應 51
2-2-6 材料對Methyl Orange及Rhodamine B之催化降解反應 51
2-2-7 材料於催化反應的重複使用性 52
2-3 實驗設備 53
2-3-1 實驗合成設備 53
2-3-2 實驗鑑定儀器 53
第三章 結果與討論 55
3-1 基本性質鑑定 55
3-1-1 XRD繞射圖譜 55
3-1-2 13C CP/MAS NMR 63
3-1-3 29Si MAS NMR 65
3-1-4 等溫氮氣吸脫附 67
3-1-5 SEM影像 71
3-1-6 TEM影像 73
3-1-7 XPS圖譜 76
3-1-8 ICP-AES結果 77
3-2 CS-1B-x吸附奈米金屬之4-Nitrophenol催化還原反應 78
3-2-1 4-Nitrophenol之催化還原反應 78
3-2-2 Ag-y-CS-1B-x對4-Nitrophenol催化還原反應之結果探討 80
3-2-3 動力學及催化速率探討 83
3-2-4 AgzNi1-z-CS-1B-10對於4-Nitrophenol催化還原反應之結果探討 86
3-3 CS-1B-x吸附奈米金屬之染料催化降解反應 90
3-3-1 有機染料催化降解反應之結果探討 90
3-3-1.1 AgzNi1-z-CS-1B-10對Methyl Orange之催化降解反應結果 91
3-3-1.2 AgzNi1-z-CS-1B-10對Rhodamine B之催化降解反應結果 94
3-3-2 動力學及催化速率探討 97
3-3-3 AgzNi1-z-CS-1B-10對於其他染料之催化降解反應結果 100
3-4 材料於催化反應的重複使用性 102
第四章 結論 104
第五章 參考文獻 105
參考文獻

1. Z. Yan, S. Tao, J. Yin and G. Li, Mesoporous silicas functionalized with a high density of carboxylate groups as efficient absorbents for the removal of basic dyestuffs, Journal of Materials Chemistry, 2006, 16, 2347-2353.
2. H.-Y. Wu, F.-K. Shieh, H.-M. Kao, Y.-W. Chen, J. R. Deka, S.-H. Liao and K. C. W. Wu, Synthesis, Bifunctionalization, and Remarkable Adsorption Performance of Benzene-Bridged Periodic Mesoporous Organosilicas Functionalized with High Loadings of Carboxylic Acids, Chemistry – A European Journal, 2013, 19, 6358-6367.
3. C.-S. Chen, C.-C. Chen, C.-T. Chen and H.-M. Kao, Synthesis of Cu nanoparticles in mesoporous silica SBA-15 functionalized with carboxylic acid groups, Chemical Communications, 2011, 47, 2288-2290.
4. Y. Hao, Y. Chong, S. Li and H. Yang, Controlled Synthesis of Au Nanoparticles in the Nanocages of SBA-16: Improved Activity and Enhanced Recyclability for the Oxidative Esterification of Alcohols, The Journal of Physical Chemistry C, 2012, 116, 6512-6519.
5. M. Machida, B. Fotoohi, Y. Amamo, T. Ohba, H. Kanoh and L. Mercier, Cadmium(II) adsorption using functional mesoporous silica and activated carbon, Journal of Hazardous Materials, 2012, 221–222, 220-227.
6. Y. Hu, Z. Zhi, Q. Zhao, C. Wu, P. Zhao, H. Jiang, T. Jiang and S. Wang, 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol, Microporous and Mesoporous Materials, 2012, 147, 94-101.
7. S. M. Solberg and C. C. Landry, Adsorption of DNA into Mesoporous Silica, The Journal of Physical Chemistry B, 2006, 110, 15261-15268.
8. Z. Zhou and M. Hartmann, Progress in enzyme immobilization in ordered mesoporous materials and related applications, Chemical Society Reviews, 2013, 42, 3894-3912.
9. Y. Wang and F. Caruso, Mesoporous Silica Spheres as Supports for Enzyme Immobilization and Encapsulation, Chemistry of Materials, 2005, 17, 953-961.
10. J. Deere, E. Magner, J. G. Wall and B. K. Hodnett, Adsorption and activity of cytochrome c on mesoporous silicates, Chemical Communications, 2001, DOI: 10.1039/B009478L, 465-465.
11. M. S. Bhattacharyya, P. Hiwale, M. Piras, L. Medda, D. Steri, M. Piludu, A. Salis and M. Monduzzi, Lysozyme Adsorption and Release from Ordered Mesoporous Materials, The Journal of Physical Chemistry C, 2010, 114, 19928-19934.
12. IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem., 1972, 31, 585-585.
13. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates, Journal of the American Chemical Society, 1992, 114, 10834-10843.
14. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359, 710-712.
15. L. T. Gibson, Mesosilica materials and organic pollutant adsorption: part A removal from air, Chemical Society Reviews, 2014, 43, 5163-5172.
16. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science, 1998, 279, 548-552.
17. J. N. Israelachvili, D. J. Mitchell and B. W. Ninham, Theory of self-assembly of lipid bilayers and vesicles, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1977, 470, 185-201.
18. G. J. d. A. A. Soler-Illia, C. Sanchez, B. Lebeau and J. Patarin, Chemical Strategies To Design Textured Materials:  from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures, Chemical Reviews, 2002, 102, 4093-4138.
19. T.-A. Fayed, M.-H. Shaaban, M.-N. El-Nahass and F.-M. Hassan, Hybrid organic-inorganic mesoporous silicates as optical nanosensor for toxic metals detection, Int. J. Chem. Appl. Biol. Sci., 2014, 1, 74-94.
20. B. J. K. Holmberg, B. Kronberg and B. Lindman, Surfactants and polymers in aqueous solution, 2nd edn., 2002.
21. D.-F. Evans and H. Wennerström, The Colloidal Domain, 2md edn., 1999.
22. Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth and G. D. Stucky, Generalized synthesis of periodic surfactant/inorganic composite materials, Nature, 1994, 368, 317-321.
23. R.-K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica, Wiley, 1979.
24. S.-H. Wu, C.-Y. Mou and H.-P. Lin, Synthesis of mesoporous silica nanoparticles, Chemical Society Reviews, 2013, 42, 3862-3875.
25. M. J. Kim and R. Ryoo, Synthesis and Pore Size Control of Cubic Mesoporous Silica SBA-1, Chemistry of Materials, 1999, 11, 487-491.
26. Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stucky, H. J. Shin and R. Ryoo, Direct imaging of the pores and cages of three-dimensional mesoporous materials, Nature, 2000, 408, 449-453.
27. M. Antonietti, J. Conrad and A. Thuenemann, Polyelectrolyte-Surfactant Complexes: A New Type of Solid, Mesomorphous Material, Macromolecules, 1994, 27, 6007-6011.
28. B. Yang and K. J. Edler, Free-Standing Ordered Mesoporous Silica Films Synthesized with Surfactant−Polyelectrolyte Complexes at the Air/Water Interface, Chemistry of Materials, 2009, 21, 1221-1231.
29. C. C. Pantazis and P. J. Pomonis, Mesostructure Design via Poly(acrylic acid)−CnTAB Complexes:  A New Route for SBA-1 Mesoporous Silica, Chemistry of Materials, 2003, 15, 2299-2300.
30. C. Lei, Y. Shin, J. Liu and E. J. Ackerman, Entrapping Enzyme in a Functionalized Nanoporous Support, Journal of the American Chemical Society, 2002, 124, 11242-11243.
31. N. Liu, R. A. Assink and C. J. Brinker, Synthesis and characterization of highly ordered mesoporous thin films with -COOH terminated pore surfaces, Chemical Communications, 2003, DOI: 10.1039/B210377J, 370-371.
32. C.-m. Yang, B. Zibrowius and F. Schuth, A novel synthetic route for negatively charged ordered mesoporous silica SBA-15, Chemical Communications, 2003, DOI: 10.1039/B304626E, 1772-1773.
33. C.-m. Yang, Y. Wang, B. Zibrowius and F. Schuth, Formation of cyanide-functionalized SBA-15 and its transformation to carboxylate-functionalized SBA-15, Physical Chemistry Chemical Physics, 2004, 6, 2461-2467.
34. H. H. P. Yiu and P. A. Wright, Enzymes supported on ordered mesoporous solids: a special case of an inorganic-organic hybrid, Journal of Materials Chemistry, 2005, 15, 3690-3700.
35. J. M. Rosenholm and M. Lindén, Towards establishing structure–activity relationships for mesoporous silica in drug delivery applications, Journal of Controlled Release, 2008, 128, 157-164.
36. C.-T. Tsai, Y.-C. Pan, C.-C. Ting, S. Vetrivel, A. S. T. Chiang, G. T. K. Fey and H.-M. Kao, A simple one-pot route to mesoporous silicas SBA-15 functionalized with exceptionally high loadings of pendant carboxylic acid groups, Chemical Communications, 2009, DOI: 10.1039/B909680A, 5018-5020.
37. J. R. Deka, Y.-H. Lin and H.-M. Kao, Ordered cubic mesoporous silica KIT-5 functionalized with carboxylic acid groups for dye removal, RSC Advances, 2014, 4, 49061-49069.
38. C.-H. Tsai, W.-C. Chang, D. Saikia, C.-E. Wu and H.-M. Kao, Functionalization of cubic mesoporous silica SBA-16 with carboxylic acid via one-pot synthesis route for effective removal of cationic dyes, Journal of Hazardous Materials, 2016, 309, 236-248.
39. Y.-C. Yang, J. R. Deka, C.-E. Wu, C.-H. Tsai, D. Saikia and H.-M. Kao, Cage like ordered carboxylic acid functionalized mesoporous silica with enlarged pores for enzyme adsorption, Journal of Materials Science, 2017, 52, 6322-6340.
40. C.-H. Lin, J. R. Deka, C.-E. Wu, C.-H. Tsai, D. Saikia, Y.-C. Yang and H.-M. Kao, Bifunctional Cage-Type Cubic Mesoporous Silica SBA-1 Nanoparticles for Selective Adsorption of Dyes, Chemistry – An Asian Journal, DOI: 10.1002/asia.201700286, n/a-n/a.
41. C.-m. Yang, P.-h. Liu, Y.-f. Ho, C.-y. Chiu and K.-j. Chao, Highly Dispersed Metal Nanoparticles in Functionalized SBA-15, Chemistry of Materials, 2003, 15, 275-280.
42. X.-G. Zhao, J.-L. Shi, B. Hu, L.-X. Zhang and Z.-L. Hua, In situ formation of silver nanoparticles inside pore channels of ordered mesoporous silica, Materials Letters, 2004, 58, 2152-2156.
43. Y. Zhao, Y. Qi, Y. Wei, Y. Zhang, S. Zhang, Y. Yang and Z. Liu, Incorporation of Ag nanostructures into channels of nitrided mesoporous silica, Microporous and Mesoporous Materials, 2008, 111, 300-306.
44. J. R. Deka, H.-M. Kao, S.-Y. Huang, W.-C. Chang, C.-C. Ting, P. C. Rath and C.-S. Chen, Ethane-Bridged Periodic Mesoporous Organosilicas Functionalized with High Loadings of Carboxylic Acid Groups: Synthesis, Bifunctionalization, and Fabrication of Metal Nanoparticles, Chemistry – A European Journal, 2014, 20, 894-903.
45. S. Zhang, W. Sun, L. Xu, X. Zheng, X. Chu, J. Tian, N. Wu and Y. Fan, Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, in pseudomonas sp. 1-7, BMC Microbiology, 2012, 12, 27.
46. Y. Chi, J. Tu, M. Wang, X. Li and Z. Zhao, One-pot synthesis of ordered mesoporous silver nanoparticle/carbon composites for catalytic reduction of 4-nitrophenol, Journal of Colloid and Interface Science, 2014, 423, 54-59.
47. Z. D. Pozun, S. E. Rodenbusch, E. Keller, K. Tran, W. Tang, K. J. Stevenson and G. Henkelman, A Systematic Investigation of p-Nitrophenol Reduction by Bimetallic Dendrimer Encapsulated Nanoparticles, The Journal of Physical Chemistry C, 2013, 117, 7598-7604.
48. P. Liu and M. Zhao, Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP), Applied Surface Science, 2009, 255, 3989-3993.
49. B. Naik, S. Hazra, V. S. Prasad and N. N. Ghosh, Synthesis of Ag nanoparticles within the pores of SBA-15: An efficient catalyst for reduction of 4-nitrophenol, Catalysis Communications, 2011, 12, 1104-1108.
50. P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo and Y. Liu, In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol, Nanoscale, 2011, 3, 3357-3363.
51. S. Xiao, W. Xu, H. Ma and X. Fang, Size-tunable Ag nanoparticles immobilized in electrospun nanofibers: synthesis, characterization, and application for catalytic reduction of 4-nitrophenol, RSC Advances, 2012, 2, 319-327.
52. L. Ai and J. Jiang, Catalytic reduction of 4-nitrophenol by silver nanoparticles stabilized on environmentally benign macroscopic biopolymer hydrogel, Bioresource Technology, 2013, 132, 374-377.
53. M. Kumar and S. Deka, Multiply Twinned AgNi Alloy Nanoparticles as Highly Active Catalyst for Multiple Reduction and Degradation Reactions, ACS Applied Materials & Interfaces, 2014, 6, 16071-16081.
54. X. H. Zhao, Q. Li, X. M. Ma, Z. Xiong, F. Y. Quan and Y. Z. Xia, Alginate fibers embedded with silver nanoparticles as efficient catalysts for reduction of 4-nitrophenol, RSC Advances, 2015, 5, 49534-49540.
55. D. Saikia, Y.-Y. Huang, C.-E. Wu and H.-M. Kao, Size dependence of silver nanoparticles in carboxylic acid functionalized mesoporous silica SBA-15 for catalytic reduction of 4-nitrophenol, RSC Advances, 2016, 6, 35167-35176.
56. D. Xu, F. Cheng, Q. Lu and P. Dai, Microwave Enhanced Catalytic Degradation of Methyl Orange in Aqueous Solution over CuO/CeO2 Catalyst in the Absence and Presence of H2O2, Industrial & Engineering Chemistry Research, 2014, 53, 2625-2632.
57. R. Rajesh, S. S. Kumar and R. Venkatesan, Efficient degradation of azo dyes using Ag and Au nanoparticles stabilized on graphene oxide functionalized with PAMAM dendrimers, New Journal of Chemistry, 2014, 38, 1551-1558.
58. N. Gupta, H. P. Singh and R. K. Sharma, Metal nanoparticles with high catalytic activity in degradation of methyl orange: An electron relay effect, Journal of Molecular Catalysis A: Chemical, 2011, 335, 248-252.
59. T. Jeyapragasam and R. S. Kannan, Microwave assisted green synthesis of silver nanorods as catalysts for rhodamine B degradation, Russian Journal of Physical Chemistry A, 2016, 90, 1334-1337.
60. N. Li, J.-G. Wang, H.-J. Zhou, P.-C. Sun and T.-H. Chen, Synthesis of Single-Crystal-Like, Hierarchically Nanoporous Silica and Periodic Mesoporous Organosilica, Using Polyelectrolyte–Surfactant Mesomorphous Complexes as a Template, Chemistry of Materials, 2011, 23, 4241-4249.
61. J. Xu, W. Liu, Y. Yu, J. Du, N. Li and L. Xu, Synthesis of mono-dispersed mesoporous SBA-1 nanoparticles with tunable pore size and their application in lysozyme immobilization, RSC Advances, 2014, 4, 37470-37478.
62. S. Tang, S. Vongehr and X. Meng, Carbon Spheres with Controllable Silver Nanoparticle Doping, The Journal of Physical Chemistry C, 2010, 114, 977-982.
63. Y. Chi, Q. Yuan, Y. Li, J. Tu, L. Zhao, N. Li and X. Li, Synthesis of Fe3O4@SiO2–Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol, Journal of Colloid and Interface Science, 2012, 383, 96-102.
64. M. H. Rashid and T. K. Mandal, Synthesis and Catalytic Application of Nanostructured Silver Dendrites, The Journal of Physical Chemistry C, 2007, 111, 16750-16760.
65. Z. Dong, X. Le, X. Li, W. Zhang, C. Dong and J. Ma, Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline, Applied Catalysis B: Environmental, 2014, 158–159, 129-135.
66. N. Sahiner, H. Ozay, O. Ozay and N. Aktas, New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols, Applied Catalysis A: General, 2010, 385, 201-207.
67. N. Sahiner, H. Ozay, O. Ozay and N. Aktas, A soft hydrogel reactor for cobalt nanoparticle preparation and use in the reduction of nitrophenols, Applied Catalysis B: Environmental, 2010, 101, 137-143.
68. N. Sahiner and O. Ozay, Enhanced Catalytic Activity in the Reduction of 4-Nitrophenol and 2-Nitrophenol by p(AMPS)-Cu(0) Hydrogel Composite Materials, Current Nanoscience, 2012, 8, 367-374.
69. T. Zhang, X. Li, S.-Z. Kang, L. Qin, G. Li and J. Mu, Facile assembly of silica gel/reduced graphene oxide/Ag nanoparticle composite with a core-shell structure and its excellent catalytic properties, Journal of Materials Chemistry A, 2014, 2, 2952-2959.
70. S. Morales-Torres, L. M. Pastrana-Martínez, J. L. Figueiredo, J. L. Faria and A. M. T. Silva, Graphene oxide-P25 photocatalysts for degradation of diphenhydramine pharmaceutical and methyl orange dye, Applied Surface Science, 2013, 275, 361-368.
71. P. Niu and J. Hao, Fabrication of Titanium Dioxide and Tungstophosphate Nanocomposite Films and Their Photocatalytic Degradation for Methyl Orange, Langmuir, 2011, 27, 13590-13597.
72. Y.-J. Xu, Y. Zhuang and X. Fu, New Insight for Enhanced Photocatalytic Activity of TiO2 by Doping Carbon Nanotubes: A Case Study on Degradation of Benzene and Methyl Orange, The Journal of Physical Chemistry C, 2010, 114, 2669-2676.
73. L. Ai, C. Zeng and Q. Wang, One-step solvothermal synthesis of Ag-Fe3O4 composite as a magnetically recyclable catalyst for reduction of Rhodamine B, Catalysis Communications, 2011, 14, 68-73.
74. Z. Deng, H. Zhu, B. Peng, H. Chen, Y. Sun, X. Gang, P. Jin and J. Wang, Synthesis of PS/Ag Nanocomposite Spheres with Catalytic and Antibacterial Activities, ACS Applied Materials & Interfaces, 2012, 4, 5625-5632.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2017-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明