參考文獻 |
1. Z. Yan, S. Tao, J. Yin and G. Li, Mesoporous silicas functionalized with a high density of carboxylate groups as efficient absorbents for the removal of basic dyestuffs, Journal of Materials Chemistry, 2006, 16, 2347-2353.
2. H.-Y. Wu, F.-K. Shieh, H.-M. Kao, Y.-W. Chen, J. R. Deka, S.-H. Liao and K. C. W. Wu, Synthesis, Bifunctionalization, and Remarkable Adsorption Performance of Benzene-Bridged Periodic Mesoporous Organosilicas Functionalized with High Loadings of Carboxylic Acids, Chemistry – A European Journal, 2013, 19, 6358-6367.
3. C.-S. Chen, C.-C. Chen, C.-T. Chen and H.-M. Kao, Synthesis of Cu nanoparticles in mesoporous silica SBA-15 functionalized with carboxylic acid groups, Chemical Communications, 2011, 47, 2288-2290.
4. Y. Hao, Y. Chong, S. Li and H. Yang, Controlled Synthesis of Au Nanoparticles in the Nanocages of SBA-16: Improved Activity and Enhanced Recyclability for the Oxidative Esterification of Alcohols, The Journal of Physical Chemistry C, 2012, 116, 6512-6519.
5. M. Machida, B. Fotoohi, Y. Amamo, T. Ohba, H. Kanoh and L. Mercier, Cadmium(II) adsorption using functional mesoporous silica and activated carbon, Journal of Hazardous Materials, 2012, 221–222, 220-227.
6. Y. Hu, Z. Zhi, Q. Zhao, C. Wu, P. Zhao, H. Jiang, T. Jiang and S. Wang, 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol, Microporous and Mesoporous Materials, 2012, 147, 94-101.
7. S. M. Solberg and C. C. Landry, Adsorption of DNA into Mesoporous Silica, The Journal of Physical Chemistry B, 2006, 110, 15261-15268.
8. Z. Zhou and M. Hartmann, Progress in enzyme immobilization in ordered mesoporous materials and related applications, Chemical Society Reviews, 2013, 42, 3894-3912.
9. Y. Wang and F. Caruso, Mesoporous Silica Spheres as Supports for Enzyme Immobilization and Encapsulation, Chemistry of Materials, 2005, 17, 953-961.
10. J. Deere, E. Magner, J. G. Wall and B. K. Hodnett, Adsorption and activity of cytochrome c on mesoporous silicates, Chemical Communications, 2001, DOI: 10.1039/B009478L, 465-465.
11. M. S. Bhattacharyya, P. Hiwale, M. Piras, L. Medda, D. Steri, M. Piludu, A. Salis and M. Monduzzi, Lysozyme Adsorption and Release from Ordered Mesoporous Materials, The Journal of Physical Chemistry C, 2010, 114, 19928-19934.
12. IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem., 1972, 31, 585-585.
13. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates, Journal of the American Chemical Society, 1992, 114, 10834-10843.
14. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359, 710-712.
15. L. T. Gibson, Mesosilica materials and organic pollutant adsorption: part A removal from air, Chemical Society Reviews, 2014, 43, 5163-5172.
16. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science, 1998, 279, 548-552.
17. J. N. Israelachvili, D. J. Mitchell and B. W. Ninham, Theory of self-assembly of lipid bilayers and vesicles, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1977, 470, 185-201.
18. G. J. d. A. A. Soler-Illia, C. Sanchez, B. Lebeau and J. Patarin, Chemical Strategies To Design Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures, Chemical Reviews, 2002, 102, 4093-4138.
19. T.-A. Fayed, M.-H. Shaaban, M.-N. El-Nahass and F.-M. Hassan, Hybrid organic-inorganic mesoporous silicates as optical nanosensor for toxic metals detection, Int. J. Chem. Appl. Biol. Sci., 2014, 1, 74-94.
20. B. J. K. Holmberg, B. Kronberg and B. Lindman, Surfactants and polymers in aqueous solution, 2nd edn., 2002.
21. D.-F. Evans and H. Wennerström, The Colloidal Domain, 2md edn., 1999.
22. Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth and G. D. Stucky, Generalized synthesis of periodic surfactant/inorganic composite materials, Nature, 1994, 368, 317-321.
23. R.-K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica, Wiley, 1979.
24. S.-H. Wu, C.-Y. Mou and H.-P. Lin, Synthesis of mesoporous silica nanoparticles, Chemical Society Reviews, 2013, 42, 3862-3875.
25. M. J. Kim and R. Ryoo, Synthesis and Pore Size Control of Cubic Mesoporous Silica SBA-1, Chemistry of Materials, 1999, 11, 487-491.
26. Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stucky, H. J. Shin and R. Ryoo, Direct imaging of the pores and cages of three-dimensional mesoporous materials, Nature, 2000, 408, 449-453.
27. M. Antonietti, J. Conrad and A. Thuenemann, Polyelectrolyte-Surfactant Complexes: A New Type of Solid, Mesomorphous Material, Macromolecules, 1994, 27, 6007-6011.
28. B. Yang and K. J. Edler, Free-Standing Ordered Mesoporous Silica Films Synthesized with Surfactant−Polyelectrolyte Complexes at the Air/Water Interface, Chemistry of Materials, 2009, 21, 1221-1231.
29. C. C. Pantazis and P. J. Pomonis, Mesostructure Design via Poly(acrylic acid)−CnTAB Complexes: A New Route for SBA-1 Mesoporous Silica, Chemistry of Materials, 2003, 15, 2299-2300.
30. C. Lei, Y. Shin, J. Liu and E. J. Ackerman, Entrapping Enzyme in a Functionalized Nanoporous Support, Journal of the American Chemical Society, 2002, 124, 11242-11243.
31. N. Liu, R. A. Assink and C. J. Brinker, Synthesis and characterization of highly ordered mesoporous thin films with -COOH terminated pore surfaces, Chemical Communications, 2003, DOI: 10.1039/B210377J, 370-371.
32. C.-m. Yang, B. Zibrowius and F. Schuth, A novel synthetic route for negatively charged ordered mesoporous silica SBA-15, Chemical Communications, 2003, DOI: 10.1039/B304626E, 1772-1773.
33. C.-m. Yang, Y. Wang, B. Zibrowius and F. Schuth, Formation of cyanide-functionalized SBA-15 and its transformation to carboxylate-functionalized SBA-15, Physical Chemistry Chemical Physics, 2004, 6, 2461-2467.
34. H. H. P. Yiu and P. A. Wright, Enzymes supported on ordered mesoporous solids: a special case of an inorganic-organic hybrid, Journal of Materials Chemistry, 2005, 15, 3690-3700.
35. J. M. Rosenholm and M. Lindén, Towards establishing structure–activity relationships for mesoporous silica in drug delivery applications, Journal of Controlled Release, 2008, 128, 157-164.
36. C.-T. Tsai, Y.-C. Pan, C.-C. Ting, S. Vetrivel, A. S. T. Chiang, G. T. K. Fey and H.-M. Kao, A simple one-pot route to mesoporous silicas SBA-15 functionalized with exceptionally high loadings of pendant carboxylic acid groups, Chemical Communications, 2009, DOI: 10.1039/B909680A, 5018-5020.
37. J. R. Deka, Y.-H. Lin and H.-M. Kao, Ordered cubic mesoporous silica KIT-5 functionalized with carboxylic acid groups for dye removal, RSC Advances, 2014, 4, 49061-49069.
38. C.-H. Tsai, W.-C. Chang, D. Saikia, C.-E. Wu and H.-M. Kao, Functionalization of cubic mesoporous silica SBA-16 with carboxylic acid via one-pot synthesis route for effective removal of cationic dyes, Journal of Hazardous Materials, 2016, 309, 236-248.
39. Y.-C. Yang, J. R. Deka, C.-E. Wu, C.-H. Tsai, D. Saikia and H.-M. Kao, Cage like ordered carboxylic acid functionalized mesoporous silica with enlarged pores for enzyme adsorption, Journal of Materials Science, 2017, 52, 6322-6340.
40. C.-H. Lin, J. R. Deka, C.-E. Wu, C.-H. Tsai, D. Saikia, Y.-C. Yang and H.-M. Kao, Bifunctional Cage-Type Cubic Mesoporous Silica SBA-1 Nanoparticles for Selective Adsorption of Dyes, Chemistry – An Asian Journal, DOI: 10.1002/asia.201700286, n/a-n/a.
41. C.-m. Yang, P.-h. Liu, Y.-f. Ho, C.-y. Chiu and K.-j. Chao, Highly Dispersed Metal Nanoparticles in Functionalized SBA-15, Chemistry of Materials, 2003, 15, 275-280.
42. X.-G. Zhao, J.-L. Shi, B. Hu, L.-X. Zhang and Z.-L. Hua, In situ formation of silver nanoparticles inside pore channels of ordered mesoporous silica, Materials Letters, 2004, 58, 2152-2156.
43. Y. Zhao, Y. Qi, Y. Wei, Y. Zhang, S. Zhang, Y. Yang and Z. Liu, Incorporation of Ag nanostructures into channels of nitrided mesoporous silica, Microporous and Mesoporous Materials, 2008, 111, 300-306.
44. J. R. Deka, H.-M. Kao, S.-Y. Huang, W.-C. Chang, C.-C. Ting, P. C. Rath and C.-S. Chen, Ethane-Bridged Periodic Mesoporous Organosilicas Functionalized with High Loadings of Carboxylic Acid Groups: Synthesis, Bifunctionalization, and Fabrication of Metal Nanoparticles, Chemistry – A European Journal, 2014, 20, 894-903.
45. S. Zhang, W. Sun, L. Xu, X. Zheng, X. Chu, J. Tian, N. Wu and Y. Fan, Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, in pseudomonas sp. 1-7, BMC Microbiology, 2012, 12, 27.
46. Y. Chi, J. Tu, M. Wang, X. Li and Z. Zhao, One-pot synthesis of ordered mesoporous silver nanoparticle/carbon composites for catalytic reduction of 4-nitrophenol, Journal of Colloid and Interface Science, 2014, 423, 54-59.
47. Z. D. Pozun, S. E. Rodenbusch, E. Keller, K. Tran, W. Tang, K. J. Stevenson and G. Henkelman, A Systematic Investigation of p-Nitrophenol Reduction by Bimetallic Dendrimer Encapsulated Nanoparticles, The Journal of Physical Chemistry C, 2013, 117, 7598-7604.
48. P. Liu and M. Zhao, Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP), Applied Surface Science, 2009, 255, 3989-3993.
49. B. Naik, S. Hazra, V. S. Prasad and N. N. Ghosh, Synthesis of Ag nanoparticles within the pores of SBA-15: An efficient catalyst for reduction of 4-nitrophenol, Catalysis Communications, 2011, 12, 1104-1108.
50. P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo and Y. Liu, In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol, Nanoscale, 2011, 3, 3357-3363.
51. S. Xiao, W. Xu, H. Ma and X. Fang, Size-tunable Ag nanoparticles immobilized in electrospun nanofibers: synthesis, characterization, and application for catalytic reduction of 4-nitrophenol, RSC Advances, 2012, 2, 319-327.
52. L. Ai and J. Jiang, Catalytic reduction of 4-nitrophenol by silver nanoparticles stabilized on environmentally benign macroscopic biopolymer hydrogel, Bioresource Technology, 2013, 132, 374-377.
53. M. Kumar and S. Deka, Multiply Twinned AgNi Alloy Nanoparticles as Highly Active Catalyst for Multiple Reduction and Degradation Reactions, ACS Applied Materials & Interfaces, 2014, 6, 16071-16081.
54. X. H. Zhao, Q. Li, X. M. Ma, Z. Xiong, F. Y. Quan and Y. Z. Xia, Alginate fibers embedded with silver nanoparticles as efficient catalysts for reduction of 4-nitrophenol, RSC Advances, 2015, 5, 49534-49540.
55. D. Saikia, Y.-Y. Huang, C.-E. Wu and H.-M. Kao, Size dependence of silver nanoparticles in carboxylic acid functionalized mesoporous silica SBA-15 for catalytic reduction of 4-nitrophenol, RSC Advances, 2016, 6, 35167-35176.
56. D. Xu, F. Cheng, Q. Lu and P. Dai, Microwave Enhanced Catalytic Degradation of Methyl Orange in Aqueous Solution over CuO/CeO2 Catalyst in the Absence and Presence of H2O2, Industrial & Engineering Chemistry Research, 2014, 53, 2625-2632.
57. R. Rajesh, S. S. Kumar and R. Venkatesan, Efficient degradation of azo dyes using Ag and Au nanoparticles stabilized on graphene oxide functionalized with PAMAM dendrimers, New Journal of Chemistry, 2014, 38, 1551-1558.
58. N. Gupta, H. P. Singh and R. K. Sharma, Metal nanoparticles with high catalytic activity in degradation of methyl orange: An electron relay effect, Journal of Molecular Catalysis A: Chemical, 2011, 335, 248-252.
59. T. Jeyapragasam and R. S. Kannan, Microwave assisted green synthesis of silver nanorods as catalysts for rhodamine B degradation, Russian Journal of Physical Chemistry A, 2016, 90, 1334-1337.
60. N. Li, J.-G. Wang, H.-J. Zhou, P.-C. Sun and T.-H. Chen, Synthesis of Single-Crystal-Like, Hierarchically Nanoporous Silica and Periodic Mesoporous Organosilica, Using Polyelectrolyte–Surfactant Mesomorphous Complexes as a Template, Chemistry of Materials, 2011, 23, 4241-4249.
61. J. Xu, W. Liu, Y. Yu, J. Du, N. Li and L. Xu, Synthesis of mono-dispersed mesoporous SBA-1 nanoparticles with tunable pore size and their application in lysozyme immobilization, RSC Advances, 2014, 4, 37470-37478.
62. S. Tang, S. Vongehr and X. Meng, Carbon Spheres with Controllable Silver Nanoparticle Doping, The Journal of Physical Chemistry C, 2010, 114, 977-982.
63. Y. Chi, Q. Yuan, Y. Li, J. Tu, L. Zhao, N. Li and X. Li, Synthesis of Fe3O4@SiO2–Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol, Journal of Colloid and Interface Science, 2012, 383, 96-102.
64. M. H. Rashid and T. K. Mandal, Synthesis and Catalytic Application of Nanostructured Silver Dendrites, The Journal of Physical Chemistry C, 2007, 111, 16750-16760.
65. Z. Dong, X. Le, X. Li, W. Zhang, C. Dong and J. Ma, Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline, Applied Catalysis B: Environmental, 2014, 158–159, 129-135.
66. N. Sahiner, H. Ozay, O. Ozay and N. Aktas, New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols, Applied Catalysis A: General, 2010, 385, 201-207.
67. N. Sahiner, H. Ozay, O. Ozay and N. Aktas, A soft hydrogel reactor for cobalt nanoparticle preparation and use in the reduction of nitrophenols, Applied Catalysis B: Environmental, 2010, 101, 137-143.
68. N. Sahiner and O. Ozay, Enhanced Catalytic Activity in the Reduction of 4-Nitrophenol and 2-Nitrophenol by p(AMPS)-Cu(0) Hydrogel Composite Materials, Current Nanoscience, 2012, 8, 367-374.
69. T. Zhang, X. Li, S.-Z. Kang, L. Qin, G. Li and J. Mu, Facile assembly of silica gel/reduced graphene oxide/Ag nanoparticle composite with a core-shell structure and its excellent catalytic properties, Journal of Materials Chemistry A, 2014, 2, 2952-2959.
70. S. Morales-Torres, L. M. Pastrana-Martínez, J. L. Figueiredo, J. L. Faria and A. M. T. Silva, Graphene oxide-P25 photocatalysts for degradation of diphenhydramine pharmaceutical and methyl orange dye, Applied Surface Science, 2013, 275, 361-368.
71. P. Niu and J. Hao, Fabrication of Titanium Dioxide and Tungstophosphate Nanocomposite Films and Their Photocatalytic Degradation for Methyl Orange, Langmuir, 2011, 27, 13590-13597.
72. Y.-J. Xu, Y. Zhuang and X. Fu, New Insight for Enhanced Photocatalytic Activity of TiO2 by Doping Carbon Nanotubes: A Case Study on Degradation of Benzene and Methyl Orange, The Journal of Physical Chemistry C, 2010, 114, 2669-2676.
73. L. Ai, C. Zeng and Q. Wang, One-step solvothermal synthesis of Ag-Fe3O4 composite as a magnetically recyclable catalyst for reduction of Rhodamine B, Catalysis Communications, 2011, 14, 68-73.
74. Z. Deng, H. Zhu, B. Peng, H. Chen, Y. Sun, X. Gang, P. Jin and J. Wang, Synthesis of PS/Ag Nanocomposite Spheres with Catalytic and Antibacterial Activities, ACS Applied Materials & Interfaces, 2012, 4, 5625-5632. |