博碩士論文 104324056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.22.51.241
姓名 周美秀(Mei-Hsiu Chou)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 玻璃上易潔耐磨之透明薄膜
相關論文
★ MFI沸石奈米結晶製備研究★ 氧化鋅奈米粒子的表面改質與分散
★ 濕法製備氧化鋅摻雜鋁之透明導電膜★ 強吸水性透明奈米沸石膜
★ 奈米氧化鋅透明導電膜的製作★ 製作AZO透明導電膜的各種嘗試
★ 奈米結晶氧化鋯合成與分散★ 接枝PDMS之奈米氧化鋯及其與矽膠複合膜之光學性質
★ 奈米氧化鋯之表面接枝及其與壓克力樹酯複合膜之電泳沉積★ 沸石晶核的製備與排列
★ 納米級氧化鋯結晶粒子之高濃度穩定懸浮液製備★ 聚芳香羧酸酯之合成及性質研究
★ MFI沸石超微粒子之製作★ 四氯化鈦之控制水解研究
★ 具環氧基矽烷包覆奈米粒子之研究★ 具再分散性之奈米級氧化鋯結晶粒子之合成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究目標為開發具有易潔且耐磨表面的透明玻璃塗層。生活中有許多玻璃產品如手機面板、櫥窗玻璃等,都望能具有自潔或易潔的疏水撥油表面,又能耐長時間使用而無擦傷和磨損等問題。疏水撥油且耐磨之表面通常是由接枝長鏈氟烷來達成。以業界常用之標準來說,要能在一公斤負載下承受一萬次鋼絲絨磨擦循環而仍然保持疏水撥油性。
由於長氟碳鏈可能導致的健康和環境問題,多氟烷在歐盟國家已被禁用。Masheder等人最近開發出了一種無氟而具有優異疏水撥油性能的鋯與長烷羧酸混合塗層。不幸的是該塗層並不耐用。我們認為先鍍膜後再進行表面接枝,應該可以改善其耐用性。而除了接枝長烷鏈外,或許改用聚矽氧烷鏈也可能達到疏水撥油的易潔效果。至於耐用程度提高的關鍵,應該在於表面接枝之撥水劑與鍍膜的鍵結強度。上述長(矽氧)烷鏈撥水劑通常藉由酸基、胺基或矽醇尾端與玻璃表面水解產生之羥基鍵結,但是此類鍵結之接著力不夠強且易於水解脫落。而磷酸基與氧化鋯或氧化鈦表面鍵結是所知接枝中最強的。是故將從此二方向尋找氟烷鏈的替代方案。
摘要(英)
We have developed a transparent, easy cleaning and durable hydrophobic coating for the glass surface. Such surface is very desirable for touch screens that have become an essential part of our daily life. For practical applications, the coatings should also be strongly adhered to the substrate and should resist at least a few thousand cycles of steel-wool scratching without losing its hydrophobicity.
Previous easy-cleaning surface relies on the hydrophobic behavior of poly-fluorocarbon coupling agents, which will be banned in European Union nations soon. Masheder et al. have recently developed a fluorine-free zirconiumcarboxylic hybrid coating that exhibits excellent dynamic oleophobicity and anti-fingerprint property. Unfortunately, the durability of this coating is far inferior to that of the current commercial products.
關鍵字(中) ★ 氧化鋯鍍膜
★ 耐磨性
★ 易潔表面
關鍵字(英)
論文目次
中文摘要 I
Abstract II
致謝 III
圖目錄 VI
表目錄 VIII
第一章、緒論 1
1.1研究背景與動機 1
第二章、背景與文獻回顧 4
2.1刮痕硬度與壓痕硬度 4
2.1-2刮痕硬度 4
2.1-1壓痕硬度 9
2.2氧化鋯鍍膜之製備方式 14
2.2-1耐磨耗之氧化鋯鍍膜 14
2.2-2高硬度之氧化鋯鍍膜 15
2.3易潔表面改質 19
2.3-1表面接枝之撥水劑種類 19
2.3-2表面性質測量 26
第三章、實驗 29
3.1使用之化學藥品 29
3.2鍍膜 31
3.2-1鍍膜液配製 31
3.2-2基材清洗 32
3.2-3浸鍍 32
3.2-4硬化處理 32
3.3表面上自組裝一單分子層之改質劑 34
3.3-1含氟試劑 35
3.3-2長碳鏈羧酸或磷酸酯 36
3.3-3聚矽氧烷 36
3.4性質量測 38
3.4-1磨耗試驗 38
3.4-2奈米壓痕與刮痕 39
3.4-3接觸角量測 40
3.4-4其他耐用性測試 41
3.4-5 X光粉末繞射儀(XRD) 41
3.4-6掃描式電子顯微鏡(SEM) 42
3.4-7 UV-vis光譜 42
3.4-8原子力顯微鏡(AFM) 42
3.4-9核磁共振光譜儀(NMR) 43
第四章、結果與討論 44
4.1無機鍍膜硬度與磨耗結果之關係 44
4.1-1鍍膜之硬度 44
4.1-2耐磨耗能力與硬度及磨擦係數關係 47
4.1-3不同硬化處理之比較 51
4.1-4無機鍍膜之其他性質 54
4.2表面改質性質與耐用性 58
4.2-1長碳鏈改質 58
4.2-2含氟改質試劑 62
4.2-3聚二甲基矽氧烷改質 66
4.2-4不同改質劑之比較 69
第五章、總結與未來展望 72
參考文獻 73
附錄一、聚矽氧烷磷酸端基之製作 77
附錄二、鍍膜元素分析 80
參考文獻
1. B. Masheder, C. Urata, A. Hozumi, Transparent and hard zirconia-based hybrid coatings with excellent dynamic/thermoresponsive oleophobicity, thermal durability, and hydrolytic stability. ACS Appl Mater Interfaces 5, 7899-7905 (2013).
2. B. Masheder, C. Urata, D. F. Cheng, A. Hozumi, Novel transparent zirconium-based hybrid material with multilayered nanostructures: studies of surface dewettability toward alkane liquids. ACS Appl Mater Interfaces 5, 154-163 (2013).
3. J. E. Shelby, Mechanical properties. Introduction to Glass Science and Technology (Ed. 2), 188-201 ( 2005).
4. Y. Yamane, Y. Sakano, K. Yamaguchi, N. Koike, H. Kishita, Fluorooxyalkylene group-containing polymer composition, a surface treatment agent comprising the same and an article treated with the agent. US20120077041, (2011).
5. S. P. Pujari, L. Scheres, A. T. Marcelis, H. Zuilhof, Covalent surface modification of oxide surfaces. Angew Chem Int Ed Engl 53, 6322-6356 (2014).
6. S. P. Pujari, Y. Li, R. Regeling, H. Zuilhof, Tribology and stability of organic monolayers on CrN: a comparison among silane, phosphonate, alkene, and alkyne chemistries. Langmuir 29, 10405-10415 (2013).
7. Corning 公司 Gorilla Glass 5產品目錄. Corning Gorilla Glass 5 PI Sheet, https://www.corning.com/microsites/csm/gorillaglass/PI_Sheets/Corning%20Gorilla%20Glass%205%220PI%220Sheet.pdf (2016).
8. M. Humood, A. Beheshti, A. A. Polycarpou, Surface reliability of annealed and tempered solar protective glasses: Indentation and scratch behavior. Solar Energy 142, 13-25 (2017).
9. S. H. Mousavi, M. H. Jilavi, M. Koch, E. Arzt, P. W. de Oliveira, Development of a Transparent Scratch Resistant Coating through Direct Oxidation of Al-Coated Glass Advanced Engineering Materials 19, 1-7 (2017).
10. W. Liu, Y. Chen, C. Ye, P. Zhang, Preparation and characterization of doped sol–gel zirconia films. Ceramics International 28, 349–354 (2002).
11. S. Iyer, W. W. Fan, Perfluoropolyether Coating Composition for Hard Surfaces. US patent 8268067, (2011).
12. 張瑞慶, 奈米壓痕技術與應用. 中華民國力學學會.
13. Y. Chen, W. Liu, Characterization and Investigation of the Tribological Properties of Sol Gel Zirconia Thin Films. J. Am. Ceram. Soc. 85, 2367–2369 (2002).
14. E. Tocha, H. Schonherr, G. Julius Vancso, N. Siebelt, Influence of Grain Size and Humidity on the Nanotribological Properties of Wear-Resistant Nanostructured ZrO2 Coatings: An Atomic Force Microscopy Study. Journal of the American Ceramic Society 88, 2498-2503 (2005).
15. S. M. O′Malley, V. M. Schneider. (2015), vol. US 2015/0132563 Al.
16. S. M. O′Malley, V. M. Schneider, Scratch-resistant liquid based coatings for glass. US patent 9663400, (2017).
17. S. Zhang, D. Sun, Y. Fu, H. Du, Recent advances of superhard nanocomposite coatings: a review. Surface and Coatings Technology 167, 113-119 (2003).
18. A. Mehner, J. Dong, T. Prenzel, W. Datchary, D. A. Lucca, Mechanical and chemical properties of thick hybrid sol–gel silica coatings from acid and base catalyzed sols. Journal of Sol-Gel Science and Technology 54, 355-362 (2010).
19. A. Mehner, W. Datchary, N. Bleil, H.-W. Zoch, The Influence of Processing on Crack Formation, Microstructure, Density and Hardness of Sol-Gel Derived Zirconia Films. Journal of Sol-Gel Science and Technology 36, 25–32 (2005).
20. D. A. Lucca et al., Investigation of Sol-Gel Derived Zr02 Thin Films by Nanoindentation. CIRP Annals - Manufacturing Technology 53, 475-478 (2004).
21. A. Díaz-Parralejo, A. L. Ortiz, R. Caruso, Effect of sintering temperature on the microstructure and mechanical properties of ZrO2-3mol%Y2O3 sol–gel films. Ceramics International 36, 2281-2286 (2010).
22. A. Díaz-Parralejo, A. L. Ortiz, F. Rodríguez-Rojas, F. Guiberteau, Effect of N2 sintering atmosphere on the hardness of sol–gel films of 3mol% Y2O3-stabilized ZrO2. Thin Solid Films 518, 2779-2782 (2010).
23. G. Ehrhart et al., Effects of rare-earth concentration and heat-treatment on the structural and luminescence properties of europium-doped zirconia sol–gel planar waveguides. Optical Materials 29, 1723-1730 (2007).
24. G. Ehrhart et al., Structural and optical properties of n-propoxide sol–gel derived ZrO2 thin films. Thin Solid Films 496, 227-233 (2006).
25. M. Garcı́a-Heras, J. M. Rincón, M. Romero, M. A. Villegas, Indentation properties of ZrO2–SiO2 coatings on glass substrates. Materials Research Bulletin 38, 1635-1644 (2003).
26. H. Zhang, J.-H. Zhou, Q.-L. Zhang, H. Yang, Mechanical and Optical Properties of Ion-exchange Strengthened Glass Coated with Sol-Gel Derived ZrO2-SiO2 Film. Journal of Inorganic Materials 28, 785-789 (2013).
27. C. Persson et al., Nano grain sized zirconia–silica glass ceramics for dental applications. Journal of the European Ceramic Society 32, 4105-4110 (2012).
28. M. Nogami, Glass preparation of the ZrO2-SiO2 system by the sol-gel process from metal alkoxides. Journal of Non-Crystalline Solids 69, 415-423 (1985).
29. Y. Castro, M. Aparicio, R. Moreno, A. DURA´ N, Silica-Zirconia Sol–Gel Coatings Obtained by Different Synthesis Routes. Journal of Sol-Gel Science and Technology 35, 41–50 (2005).
30. I. Uhlmann, D. Hawelka, E. Hildebrandt, J. Pradella, J. Rödel, Structure and mechanical properties of silica doped zirconia thin films. Thin Solid Films 527, 200-204 (2013).
31. X. M. Li, D. Reinhoudt, M. Crego-Calama, What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36, 1350-1368 (2007).
32. Y. Ohkubo, I. Tsuji, S. Onishi, K. Ogawa, Preparation and characterization of super-hydrophobic and oleophobic surface. Journal of Materials Science 45, 4963-4969 (2010).
33. C. S. Park et al., Semifluorinated Alkylphosphonic Acids Form High-Quality Self-Assembled Monolayers on Ag-Coated Yttrium Barium Copper Oxide Tapes and Enable Filamentization of the Tapes by Microcontact Printing. Langmuir 32, 8623-8630 (2016).
34. J. W. Krumpfer, T. J. McCarthy, Rediscovering silicones: ”unreactive” silicones react with inorganic surfaces. Langmuir 27, 11514-11519 (2011).
35. J. A. Blackwell, P. W. Carr, Development of an Eluotropic Series for the Chromatography of Lewis Bases on Zirconium Oxide. Analytical Chemistry 64, 863-873 (1992).
36. O. Schafer, H. j. Luckas, Method for the production of organosiloxanes modified by a phosponic acid ester. US 7,491,784 B2, (2009).
37. T. Song, Z. S. Li, J. G. Liu, S. Y. Yang, Novel phosphorus-silicon synergistic flame retardants: Synthesis and characterization. Chinese Chemical Letters 23 793-796 (2012).
38. J. P. Ding, Z. Q. Tao, X. B. Zuo, L. Fan, S. Y. Yang, Preparation and properties of halogen-free flame retardant epoxy resins with phosphorus-containing siloxanes. Polym. Bull 62, 829-841 (2009).
39. H. Steininger, M. Schuster, K. D. Kreuer, J. Maier, Intermediate temperature proton conductors based on phosphonic acid functionalized oligosiloxanes. Solid State Ionics 177, 2457-2462 (2006).
40. B. Youssef, E. About-Jaudet, C. Bunel, Bunel, C. Free-radical synthesis of new phosphorus-containing silane monomers and polysiloxanes. European Polymer Journal 34, 1649-1655 (1998).
41. Y. Li, P. Tao, A. Viswanath, B. C. Benicewicz, L. S. Schadler, Bimodal surface ligand engineering: the key to tunable nanocomposites. Langmuir 29, 1211-1220 (2013).
42. P. Tao, Y. Li, R. W. Siegel, L. S. Schadler, Transparent luminescent silicone nanocomposites filled with bimodal PDMS-brush-grafted CdSe quantum dots. J. Mater. Chem. C 1, 86-94 (2013).
43. C. Urata et al., Why can organic liquids move easily on smooth alkyl-terminated surfaces? Langmuir 30, 4049-4055 (2014).
44. Shin-Etsu產品目錄. 氟化防汙塗料X-71-195 http://www.topcocorp.com/upload/media/product/Sales6/download/touch/X-71-195%120%E194%BA%A197%E195%193%181%E197%199B%AE%E195%BD%195(%E194%B198%AD%E196%196%187).pdf.
45. 坤輝科技核心技術. 抗指紋技術, http://www.unibright.com.tw/TW/Technology04.aspx.
46. J. Li, X. Jiao, D. Chen, Preparation of Zirconia Fibers via a Simple Aqueous Sol‐Gel Method. Journal of Dispersion Science and Technology 28, 531-535 (2007).
47. X. Mao, Y. Bai, J. Yu, B. Ding, J. Ferreira, Flexible and Highly Temperature Resistant Polynanocrystalline Zirconia Nanofibrous Membranes Designed for Air Filtration. Journal of the American Ceramic Society 99, 2760-2768 (2016).
48. F. Namavar et al., Lotus effect in engineered zirconia. Nano Lett. 8 988-996 (2008).
49. S.-H. Joo et al., Enhanced wear resistivity of a Zr-based bulk metallic glass processed by high-pressure torsion under reciprocating dry conditions. Metals and Materials International 22, 383-390 (2016).
指導教授 蔣孝澈(Anthony Shiaw-Tseh Chiang) 審核日期 2017-8-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明