參考文獻 |
1. Last, N. B.; Schlamadinger, D. E.; Miranker, A. D., A common landscape for membrane‐active peptides. Protein Science 2013, 22 (7), 870-882.
2. Milletti, F., Cell-penetrating peptides: classes, origin, and current landscape. Drug Discovery Today 2012, 17 (15), 850-860.
3. Tamm, L. K.; Han, X.; Li, Y.; Lai, A. L., Structure and function of membrane fusion peptides. Peptide Science 2002, 66 (4), 249-260.
4. Brogden, K. A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology 2005, 3 (3), 238-250.
5. Takahashi, R. H.; Nagao, T.; Gouras, G. K., Plaque formation and the intraneuronal accumulation of β‐amyloid in Alzheimer′s disease. Pathology International 2017.
6. Raghuraman, H.; Chattopadhyay, A., Melittin: a membrane-active peptide with diverse functions. Bioscience Reports 2007, 27 (4-5), 189-223.
7. Ownby, C. L.; Powell, J. R.; Jiang, M.-s.; Fletcher, J. E., Melittin and phospholipase A2 from bee (Apis mellifera) venom cause necrosis of murine skeletal muscle in vivo. Toxicon 1997, 35 (1), 67-80.
8. Dempsey, C. E., The actions of melittin on membranes. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 1990, 1031 (2), 143-161.
9. Su, C.-J.; Wu, S.-S.; Jeng, U.-S.; Lee, M.-T.; Su, A.-C.; Liao, K.-F.; Lin, W.-Y.; Huang, Y.-S.; Chen, C.-Y., Peptide-induced bilayer thinning structure of unilamellar vesicles and the related binding behavior as revealed by X-ray scattering. Biochimica et Biophysica Acta (BBA)-Biomembranes 2013, 1828 (2), 528-534.
10. Lee, M.-T.; Sun, T.-L.; Hung, W.-C.; Huang, H. W., Process of inducing pores in membranes by melittin. Proceedings of the National Academy of Sciences 2013, 110 (35), 14243-14248.
11. Allende, D.; Simon, S.; McIntosh, T. J., Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. Biophysical Journal 2005, 88 (3), 1828-1837.
12. Benachir, T.; Monette, M.; Grenier, J.; Lafleur, M., Melittin-induced leakage from phosphatidylcholine vesicles is modulated by cholesterol: a property used for membrane targeting. European Biophysics Journal 1997, 25 (3), 201-210.
13. Subbarao, N. K.; MacDonald, R. C., Lipid unsaturation influences melittin-induced leakage of vesicles. Biochimica et Biophysica Acta (BBA)-Biomembranes 1994, 1189 (1), 101-107.
14. Quist, A.; Doudevski, I.; Lin, H.; Azimova, R.; Ng, D.; Frangione, B.; Kagan, B.; Ghiso, J.; Lal, R., Amyloid ion channels: a common structural link for protein-misfolding disease. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (30), 10427-10432.
15. WHO, A., Dementia: A public health priority. Geneva: World Health Organization 2012.
16. Prince, M. J., World Alzheimer Report 2015: the global impact of dementia: an analysis of prevalence, incidence, cost and trends. Alzheimer′s Disease International 2015.
17. Association, A. s., 2012 Alzheimer’s disease facts and figures. Alzheimer′s & Dementia 2012, 8 (2), 131-168.
18. A.D.I, https://www.alz.co.uk/. assed by July 4, 2017.
19. Selkoe, D. J., Alzheimer′s disease: genes, proteins, and therapy. Physiological Reviews 2001, 81 (2), 741-766.
20. Zheng, H.; Koo, E. H., Biology and pathophysiology of the amyloid precursor protein. Molecular Neurodegeneration 2011, 6 (1), 27.
21. Roychaudhuri, R.; Yang, M.; Hoshi, M. M.; Teplow, D. B., Amyloid β-protein assembly and Alzheimer disease. Journal of Biological Chemistry 2009, 284 (8), 4749-4753.
22. Walsh, D. M.; Lomakin, A.; Benedek, G. B.; Condron, M. M.; Teplow, D. B., Amyloid β-protein fibrillogenesis detection of a protofibrillar intermediate. Journal of Biological Chemistry 1997, 272 (35), 22364-22372.
23. Wilson, M. R.; Yerbury, J. J.; Poon, S., Potential roles of abundant extracellular chaperones in the control of amyloid formation and toxicity. Molecular Biosystems 2008, 4 (1), 42-52.
24. Butterfield, S. M.; Lashuel, H. A., Amyloidogenic protein–membrane interactions: mechanistic insight from model systems. Angewandte Chemie International Edition 2010, 49 (33), 5628-5654.
25. Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P. H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y., The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016, 537 (7618), 50-56.
26. Kayed, R.; Head, E.; Thompson, J. L.; McIntire, T. M.; Milton, S. C.; Cotman, C. W.; Glabe, C. G., Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003, 300 (5618), 486-489.
27. Doody, R. S.; Thomas, R. G.; Farlow, M.; Iwatsubo, T.; Vellas, B.; Joffe, S.; Kieburtz, K.; Raman, R.; Sun, X.; Aisen, P. S., Phase 3 trials of solanezumab for mild-to-moderate Alzheimer′s disease. New England Journal of Medicine 2014, 370 (4), 311-321.
28. Doody, R. S.; Raman, R.; Farlow, M.; Iwatsubo, T.; Vellas, B.; Joffe, S.; Kieburtz, K.; He, F.; Sun, X.; Thomas, R. G., A phase 3 trial of semagacestat for treatment of Alzheimer′s disease. New England Journal of Medicine 2013, 369 (4), 341-350.
29. Salloway, S.; Sperling, R.; Fox, N. C.; Blennow, K.; Klunk, W.; Raskind, M.; Sabbagh, M.; Honig, L. S.; Porsteinsson, A. P.; Ferris, S., Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer′s disease. New England Journal of Medicine 2014, 370 (4), 322-333.
30. Kayed, R.; Sokolov, Y.; Edmonds, B.; McIntire, T. M.; Milton, S. C.; Hall, J. E.; Glabe, C. G., Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. Journal of Biological Chemistry 2004, 279 (45), 46363-46366.
31. Sokolov, Y.; Kozak, J. A.; Kayed, R.; Chanturiya, A.; Glabe, C.; Hall, J. E., Soluble amyloid oligomers increase bilayer conductance by altering dielectric structure. The Journal of General Physiology 2006, 128 (6), 637-647.
32. Haataja, L.; Gurlo, T.; Huang, C. J.; Butler, P. C., Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocrine Reviews 2008, 29 (3), 303-316.
33. Simons, M.; Keller, P.; De Strooper, B.; Beyreuther, K.; Dotti, C. G.; Simons, K., Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proceedings of the National Academy of Sciences 1998, 95 (11), 6460-6464.
34. Ehehalt, R.; Keller, P.; Haass, C.; Thiele, C.; Simons, K., Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. The Journal of Cell Biology 2003, 160 (1), 113-123.
35. Hamada, T.; Morita, M.; Kishimoto, Y.; Komatsu, Y.; Vestergaard, M. d.; Takagi, M., Biomimetic microdroplet membrane interface: detection of the lateral localization of amyloid beta peptides. The Journal of Physical Chemistry Letters 2009, 1 (1), 170-173.
36. Morita, M.; Hamada, T.; Tendo, Y.; Hata, T.; Mun′delanji, C. V.; Takagi, M., Selective localization of Alzheimer′s amyloid beta in membrane lateral compartments. Soft Matter 2012, 8 (10), 2816-2819.
37. Choucair, A.; Chakrapani, M.; Chakravarthy, B.; Katsaras, J.; Johnston, L., Preferential accumulation of Aβ (1− 42) on gel phase domains of lipid bilayers: An AFM and fluorescence study. Biochimica et Biophysica Acta (BBA)-Biomembranes 2007, 1768 (1), 146-154.
38. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W., Theory of self-assembly of lipid bilayers and vesicles. Biochimica et Biophysica Acta (BBA)-Biomembranes 1977, 470 (2), 185-201.
39. Fong, C.; Le, T.; Drummond, C. J., Lyotropic liquid crystal engineering–ordered nanostructured small molecule amphiphile self-assembly materials by design. Chemical Society Reviews 2012, 41 (3), 1297-1322.
40. Ivankin, A.; Kuzmenko, I.; Gidalevitz, D., Cholesterol-phospholipid interactions: new insights from surface x-ray scattering data. Physical Review Letters 2010, 104 (10), 108101.
41. Veatch, S. L.; Keller, S. L., Organization in lipid membranes containing cholesterol. Physical Review Letters 2002, 89 (26), 268101.
42. Daly, T. A.; Wang, M.; Regen, S. L., The origin of cholesterol’s condensing effect. Langmuir 2011, 27 (6), 2159-2161.
43. Krause, M. R.; Regen, S. L., The structural role of cholesterol in cell membranes: from condensed bilayers to lipid rafts. Accounts of Chemical Research 2014, 47 (12), 3512-3521.
44. Singer, S.; Nicolson, G. L., The fluid mosaic model of the structure of cell membranes. Membranes and Viruses in Immunopathology; Day, SB, Good, RA, Eds 1972, 7-47.
45. (a) Allen, T. M.; Cullis, P. R., Liposomal drug delivery systems: from concept to clinical applications. Advanced drug delivery reviews 2013, 65 (1), 36-48; (b) Pattni, B. S.; Chupin, V. V.; Torchilin, V. P., New developments in liposomal drug delivery. Chemical Reviews 2015, 115 (19), 10938-10966.
46. Miyoshi, T.; Kato, S., Detailed analysis of the surface area and elasticity in the saturated 1, 2-diacylphosphatidylcholine/cholesterol binary monolayer system. Langmuir 2015, 31 (33), 9086-9096.
47. Kundu, A.; Yamaguchi, S.; Tahara, T., Evaluation of pH at charged lipid/water interfaces by heterodyne-detected electronic sum frequency generation. The Journal of Physical Chemistry Letters 2014, 5 (4), 762-766.
48. Ngyugen, H.; McNamee, C. E., Determination and comparison of how the chain number and chain length of a lipid affects its interactions with a phospholipid at an air/water interface. The Journal of Physical Chemistry B 2014, 118 (22), 5901-5912.
49. Hädicke, A.; Blume, A., Binding of the Cationic Peptide (KL) 4K to Lipid Monolayers at the Air–Water Interface: Effect of Lipid Headgroup Charge, Acyl Chain Length, and Acyl Chain Saturation. The Journal of Physical Chemistry B 2016, 120 (16), 3880-3887.
50. Relini, A.; Marano, N.; Gliozzi, A., Probing the interplay between amyloidogenic proteins and membranes using lipid monolayers and bilayers. Advances in Colloid and Interface Science 2014, 207, 81-92.
51. Lingwood, D.; Simons, K., Lipid rafts as a membrane-organizing principle. Science 2010, 327 (5961), 46-50.
52. Simons, K.; Ikonen, E., Functional rafts in cell membranes. Nature 1997, 387 (6633), 569.
53. Simons, K.; Toomre, D., Lipid rafts and signal transduction. Nature reviews Molecular Cell Biology 2000, 1 (1), 31-39.
54. Brown, D. A.; Rose, J. K., Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 1992, 68 (3), 533-544.
55. Yu, J.; Fischman, D. A.; Steck, T. L., Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. Journal of Supramolecular Structure 1973, 1 (3), 233-248.
56. Harder, T.; Scheiffele, P.; Verkade, P.; Simons, K., Lipid domain structure of the plasma membrane revealed by patching of membrane components. The Journal of Cell Biology 1998, 141 (4), 929-942.
57. Varma, R.; Mayor, S., GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 1998, 394 (6695), 798-801.
58. Friedrichson, T.; Kurzchalia, T. V., Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 1998, 394 (6695), 802-805.
59. Pralle, A.; Keller, P.; Florin, E.-L.; Simons, K.; Hörber, J. H., Sphingolipid–cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. The Journal of Cell Biology 2000, 148 (5), 997-1008.
60. Veatch, S. L.; Keller, S. L., Seeing spots: complex phase behavior in simple membranes. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 2005, 1746 (3), 172-185.
61. Ladbrooke, B.; Chapman, D., Thermal analysis of lipids, proteins and biological membranes a review and summary of some recent studies. Chemistry and Physics of Lipids 1969, 3 (4), 304-356.
62. Keller, S. L., Coexisting liquid phases in lipid monolayers and bilayers. Journal of Physics: Condensed Matter 2002, 14 (19), 4763.
63. Sanchez, S. A.; Tricerri, M. A.; Gratton, E., Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo. Proceedings of the National Academy of Sciences 2012, 109 (19), 7314-7319.
64. Nickels, J. D.; Cheng, X.; Mostofian, B.; Stanley, C.; Lindner, B.; Heberle, F. A.; Perticaroli, S.; Feygenson, M.; Egami, T.; Standaert, R. F., Mechanical properties of nanoscopic lipid domains. Journal of the American Chemical Society 2015, 137 (50), 15772-15780.
65. Heberle, F. A.; Petruzielo, R. S.; Pan, J.; Drazba, P.; Kučerka, N.; Standaert, R. F.; Feigenson, G. W.; Katsaras, J., Bilayer thickness mismatch controls domain size in model membranes. Journal of the American Chemical Society 2013, 135 (18), 6853-6859.
66. García-Sáez, A. J.; Chiantia, S.; Schwille, P., Effect of line tension on the lateral organization of lipid membranes. Journal of Biological Chemistry 2007, 282 (46), 33537-33544.
67. Veatch, S. L.; Keller, S. L., Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophysical Journal 2003, 85 (5), 3074-3083.
68. Chen, D.; Santore, M. M., Large effect of membrane tension on the fluid–solid phase transitions of two-component phosphatidylcholine vesicles. Proceedings of the National Academy of Sciences 2014, 111 (1), 179-184.
69. Veatch, S.; Polozov, I.; Gawrisch, K.; Keller, S., Liquid domains in vesicles investigated by NMR and fluorescence microscopy. Biophysical Journal 2004, 86 (5), 2910-2922.
70. Heberle, F. A.; Wu, J.; Goh, S. L.; Petruzielo, R. S.; Feigenson, G. W., Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains. Biophysical Journal 2010, 99 (10), 3309-3318.
71. Uppamoochikkal, P.; Tristram-Nagle, S.; Nagle, J. F., Orientation of tie-lines in the phase diagram of DOPC/DPPC/cholesterol model biomembranes. Langmuir 2010, 26 (22), 17363-17368.
72. Yang, S.-T.; Kiessling, V.; Tamm, L. K., Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion. Nature Communications 2016, 7, 11401.
73. Ryan, T. M.; Caine, J.; Mertens, H. D.; Kirby, N.; Nigro, J.; Breheney, K.; Waddington, L. J.; Streltsov, V. A.; Curtain, C.; Masters, C. L., Ammonium hydroxide treatment of Aβ produces an aggregate free solution suitable for biophysical and cell culture characterization. PeerJ 2013, 1, e73.
74. Pace, C. N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T., How to measure and predict the molar absorption coefficient of a protein. Protein Science 1995, 4 (11), 2411-2423.
75. Marsh, D., Lateral pressure in membranes. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 1996, 1286 (3), 183-223.
76. Martin, P.; Szablewski, M., Langmuir-Blodgett troughs operating manual 6th edition. Nima Technology Ltd, England 2001.
77. Arzenšek, D. In Dynamic light scattering and application to proteins in solutions, Seminar, Department of Physics, University of Ljubljana, 2010; pp 1-18.
78. Stottrup, B. L.; Stevens, D. S.; Keller, S. L., Miscibility of ternary mixtures of phospholipids and cholesterol in monolayers, and application to bilayer systems. Biophys J 2005, 88 (1), 269-76.
79. Stottrup, B. L.; Stevens, D. S.; Keller, S. L., Miscibility of ternary mixtures of phospholipids and cholesterol in monolayers, and application to bilayer systems. Biophysical Journal 2005, 88 (1), 269-276.
80. Yang, S.-T.; Kiessling, V.; Simmons, J. A.; White, J. M.; Tamm, L. K., HIV gp41-mediated membrane fusion occurs at edges of cholesterol-rich lipid domains. Nature Chemical Biology 2015, 11 (6), 424-431.
81. McHenry, A. J.; Sciacca, M. F.; Brender, J. R.; Ramamoorthy, A., Does cholesterol suppress the antimicrobial peptide induced disruption of lipid raft containing membranes? Biochimica et Biophysica Acta (BBA)-Biomembranes 2012, 1818 (12), 3019-3024.
82. Sciacca, M. F.; Kotler, S. A.; Brender, J. R.; Chen, J.; Lee, D.-k.; Ramamoorthy, A., Two-step mechanism of membrane disruption by Aβ through membrane fragmentation and pore formation. Biophysical Journal 2012, 103 (4), 702-710.
83. McLaurin J, C. A., Membrane Disruption by Alzheimer β-Amyloid Peptides Mediated through Specific Binding to Either Phospholipids or Gangliosides. J Biol Chem. 1996, 271 (43), 26482-9.
84. Williams, T. L.; Day, I. J.; Serpell, L. C., The effect of Alzheimer’s Aβ aggregation state on the permeation of biomimetic lipid vesicles. Langmuir 2010, 26 (22), 17260-17268.
85. Broersen, K.; Jonckheere, W.; Rozenski, J.; Vandersteen, A.; Pauwels, K.; Pastore, A.; Rousseau, F.; Schymkowitz, J., A standardized and biocompatible preparation of aggregate-free amyloid beta peptide for biophysical and biological studies of Alzheimer′s disease. Protein Engineering, Design & Selection 2011, 24 (9), 743-750. |