博碩士論文 104223066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:3.140.196.5
姓名 何佳蓉(Jia-Rong He)  查詢紙本館藏   畢業系所 化學學系
論文名稱 吡嗪及喹喔啉衍生之高共軛性染料分子的合成與其非線性光學性質探討
(Synthesis and Nonlinear Optical Properties of Highly Conjugated Chromophores Based on Pyrazine and Quinoxaline Structural Units)
相關論文
★ 含五苯荑及異參茚并苯衍生物之合成與光物理行為之研究★ 具雙光子吸收行為之染料分子的合成與其光學性質探討
★ 新型雙光子吸收材料的分子設計與合成及其光學性質的探討★ 新型多叉及樹枝狀染料分子的合成及其非線性光學性質探討
★ 新穎多叉型之雙光子吸收材料的分子設計、合成與光學性質探討★ 新型四取代乙烯類及喹喔啉類染料分子的合成及其光學性質探討
★ 新型具喹喔啉、三嗪和吡嗪結構之染料分子 的合成及其光學性質探討★ Synthesis and Nonlinear Optical Property Characterizations of Novel Chromophores with Extended π-Conjugation Derived from Functionalized Fluorene Units
★ 含四取代乙烯及類喹喔啉結構單元之多分岐染料分子的合成與其非線性光學性質探討★ Synthesis and Nonlinear Optical Property Characterizations of Novel Fluorophores with Multi-Quinoxalinyl Units
★ 新型含茚并喹喔啉結構單元之樹狀共軛染料分子的合成與其非線性光學性質探討★ 含四取代乙烯乙炔及類喹喔啉結構單元之多分歧染料分子的合成與非線性光學性質探討
★ Two-Photon Absorption and Optical Power-limiting Properties of Three- and Six-Branched Chromophores Derived from 1,3,5-Triazine and Fluorene Units★ 新型含喹喔啉及各類拉電子基之染料分子的合成及其非線性光學性質探討
★ 含咔唑、芴及茚并喹喔啉等雜環單元之共軛染料分子的合成 與其非線性光學性質探討★ 合成各類以雜環為核心的分子並研究其非線性光學性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要呈現三個新的模型分子系統的合成以及其光學性質的探討。此三種新模型系統分別為含二氰基的吡嗪(pyrazine)及喹喔啉(quinoxaline)衍生物、二苯并印并吩嗪(dibenzoindenophenazine)衍生物以及具反轉中心的多芳香環共平面分子。在光學性質的探討方面,我們量測了吸收及放射光譜、螢光量子產率、螢光生命期,並以飛秒時域雷射進行雙光子激發螢光實驗,得出模型分子的雙光子吸收截面值,再以光功率依賴性實驗確認螢光強度與激發光功率的關係,證實模型分子是透過雙光子吸收機制產生螢光。我們歸納實驗結果並得到以下結論:
(1) 二氰基取代基具有降低分子HOMO與LUMO的能隙、提升電荷轉移能力、增加雙光子吸收截面值、以及在極性溶劑中產生螢光淬滅等效果。
(2) 二苯并印并吩嗪衍生分子以Y形連接electron-donor可有較高的雙光子吸收截面值(~1800 GM),T形則具有較長螢光生命期(7.6 ns)。
(3) 具反轉中心的多芳香環共平面分子,我們發現其單光子吸收峰的兩倍波長處無雙光子吸收,而單光子無吸收處之兩倍波長卻具有窄而高的雙光子吸收峰(~1400 GM),展現雙光子吸收和單光子吸收之選擇定則相反的特性。 
摘要(英)
In this thesis, we present the synthesis and the characterization of optical properities of three novel molecular systems. The model compound system include the derivatives pyrazine/quinoxaline with dicyano group, dibenzoindenophenazine, and a polycyclic aromatic compound with centrosymmetry. For optical property characterization, we have measured the absorption and emission spectra, fluorescence quantum yield and lifetime. The nonlinear optical properties of two-photon absorption cross section were measured by two-photon excited fluorescence in the femtosecond domain. We also did the power dependence experiment to verify the two-photon absorption mechanism of model molecules. Our finding are summarized as follows:
(1) The dicyano substituents could be introduced to decrease the HOMO-LUMO energy gap. It also enhances the ability of intramolecular charge transfer and two-photon activities. In addition, these moldel compounds showed fluorescence quenching in polar solvents.
(2) The dibenzoindenophenazine derivatives exhibit stronger two-photon absorptivity It is found that the Y-shape model compound has the largest two-photon absorption cross section value (~1800 GM) while T-shape analogue possesses longer fluorescence lifetime (7.6 ns).
(3) The centrosymmetric nature of the polycyclic aromatic compound (8) has led to the distinct spectral distribution pattern of its one-photon and two-photon absorption. In other words, the distribution of the one-photon accessible excited-states is dramatically different from that of two-photon accessible excited-states.
關鍵字(中) ★ 雙光子吸收
★ 二氰基吡嗪
★ 二氰基喹喔啉
★ 二苯并印并吩嗪
★ 多芳香環分子
★ 非線性光學
關鍵字(英) ★ two-photon absorption
★ dicyano pyrazine
★ dicyano quinoxaline
★ dibenzoindenophenazine
★ polycyclic aromatic compound
★ nonlinear optics
論文目次
摘要 I
Abstract II
誌謝 III
目錄 IV
第一章 序論 1
1-1 雙光子吸收理論 1
1-2 雙光子吸收截面推導 2
1-3 雙光子吸收材料之應用與發展 3
1-4 雙光子吸收材料之分子設計研究 7
1-4-1 線型分子 7
1-4-2 多叉型與樹狀分子 11
1-4-3 含雜環單元的分子系統 14
1-4-4 有機金屬化合物 18
1-4-5 量子點材料 19
1-5 本論文架構 20
第二章 本論文模型分子設計與合成 24
2-1 本論文模型分子之設計 24
2-2 本論文模型分子之合成途徑與討論 28
2-2-1 第一系列:含氰基之曲型對稱分子 28
2-2-2 第二系列:含多併雜環核心之不對稱分子 32
2-2-3 第三系列:多芳香環共平面分子 38
第三章 光學性質探討 44
3-1 光學實驗述 44
3-2 第一系列模型分子之光學實驗結果探討 49
3-3 第二系列模型分子之光學實驗結果探討 57
3-4 多芳香環共平面分子之光學實驗結果探討 63
3-5 結論 69
第四章 實驗細節 71
4-1 分子合成所使用藥品及溶劑 71
4-2 實驗設備型號、參數、相關計算公式 72
4-3 化合物詳細合成步驟 75
4-3-1 本論文中間物之詳細合成步驟 75
4-3-2 本論文最終產物之詳細合成步驟 110
第五章 附圖 123
參考文獻 [1] M. Göppert-Mayer Ann. Phys. 1931, 9, 273-295.
[2] W. Kaiser; C. G. B. Garrett Phys. Rev. Lett. 1961, 7, 229-231.
[3] David A. Kleinman Phys. Rev. 1961, 125, 87-88.
[4] G. S. He; L.-S. Tan; Q. Zheng; P. N. Prasad Chem. Rev. 2008, 108, 1245-1330.
[5] M. P. Joshi; J. Swiatkiewicz; F.-M. Xu; P. N. Prasad Opt. Lett. 1998, 23, 1742-1744
[6] D. A. Parthenopoulos; P. M. Rentxepis Science 1989, 245, 843-845.
[7] N. Tetreault; G. von Freymann; M. Deubel; M. Hermatschweiler; F. Perez-Willard; S. John; M.Wegener; G. A. Ozin Adv. Mater. 2006, 18, 457- 460.
[8] S. Wang; Z. Li; X. Liu; S. Phan; F. Lv; K. D. Belfield; S. Wang; K. S. Schanze Chem. Mater. 2017, 29, 3295-3303.
[9] K. A. Korzycka; P. M. Bennett; E. J. Cueto-Diaz; G. Wicks; M. Drobizhev; M. Blanchard-Desce; A. Rebanecd; H. L. Anderson Chem. Sci. 2015, 6, 2419-2426.
[10] B. A. Reinhardt; L. L. Brott; S. J. Clarson; A. G. Dillard; J. C. Bhatt; R. Kannan; L. Yuan; Guang S. He; P. N. Prasad Chem. Mater. 1998, 10, 1863-1874.
[11] M. Albota; D. Beljonne; J.-L. Bredas; J. E. Ehrlich; J.-Y. Fu; A. A. Heikal; S. E. Hess; T. Kogej; M. D. Levin; S. R. Marder; D. McCord-Maughon; J. W. Perry; H. Rockel; M. Rumi; G. Subramaniam, W. W. Webb; X.-L. Wu; C. Xu Science 1998, 10, 1863-1874.
[12] L. Ventelon; S. Charier; L. Moreaux; J. Mertz; M. Blanchard-Desce Angew. Chem. Int. Ed. 2001, 113, 2156-2159.
[13] E. Cogny-Laage; J.-F. Allemand; O. Ruel; J.-B. Baudin; V. Croquette; M. Blanchard-Desce; L. Jullien Chem. Eur. J. 2004, 10, 1445-1455.
[14] S.-J. Chung; K.-S. Kim; T.-C. Lin; G. S. He; J. Swiatkiewicz; P. N. Prasad J. Phys. Chem. B 1999, 103, 10741-10745.
[15] M. Drobizhev; A. Karotki; Y. Dzenis; A. Rebane; Z. Suo; C. W. Spangler J. Phys. Chem. B 2003, 107, 7540-7543.
[16] M. G. Kuzyk J. Chem. Phys. 2003, 119, 8327-8334.
[17] E. Collini Phys. Chem. Chem. Phys. 2012, 14, 3725-3736.
[18] K. D. Belfield; M. V. Bondar; S. Yao; I. A. Mikhailov; V. S. Polikanov; O. V. Przhonska J. Phys. Chem. C 2014, 118, 13790-13800.
[19] B. Jędrzejewska; M. Gordel; J. Szeremeta; P. Krawczyk; M. Samoć J. Org. Chem. 2015, 80, 9641-9651.
[20] O. Vakuliuk; A. Purc; G. Clermont; M. Blanchard-Desce; D. T. Gryko ChemPhotoChem 2017, 1, 243-252.
[21] H. Chen; Y. Tang; H. Shang; X. Kong; R. Guoa; W. Lin J. Mater. Chem. B 2017, 5, 2436-2444.
[22] (a) T.-C. Lin; C.-Y. Liu; M.-H. Li; Y.-Y. Liu; S.-Y. Tseng; Y.-T. Wang; Y.-H. Tseng; H.-H. Chub; C.-W. Luo J. Mater. Chem. C 2014, 2, 821-828 (b) T.-C. Lin; B.-K. Tsai; T.-Y. Huang; W. Chien; Y.-Y. Liu; M.-H. Li; M.-Y. Tsai Dyes and Pigments 2015, 120, 99-111 (c) T.-C. Lin; J.-Y. Lin; B.-K. Tsai; N.-Y. Liang; W. Chien Dyes Pigm. 2016, 132, 347-359.
[23] (a) A. M. McDonagh; M. G. Humphrey; M. Samoc; B. Luther-Davies; S. Houbrechts; T. Wada; H. Sasabe; A. Persoons J. Am. Chem. Soc. 1999, 121, 1405-1406. (b) A. M. McDonagh; M. G. Humphrey; M. Samoc; B. Luther-Davies Organometallics 1999, 18, 5195-5197.
[24] C. Feuvrie; O. Maury; H. Le Bozec; I. Ledoux; J. P. Morrall; G. T. Dalton; M. Samoc; M. G. Humphrey J. Phys. Chem. A 2007, 111, 8980-8985.
[25] T. Schwich; M. P. Cifuentes; P. A. Gugger; M. Samoc; M. G. Humphrey Adv. Mater. 2011, 23, 1433-1435.
[26] U. Resch-Genger; M. Grabolle; S. Cavaliere-Jaricot; R. Nitschke; T. Nann Nat. Methods 2008, 5, 763-775.
[27] J. Szeremeta; M. Nyk; D. Wawrzynczyk; M. Samoc Appl. Phys. Lett. 2012, 100, 041102.
[28] J. Szeremeta; M. Nyk; D. Wawrzynczyk; M. Samoc Nanoscale 2013, 5, 2388-2393.
[29] M. Nyk; J. Szeremeta; D. Wawrzynczyk; M. Samoc J. Phys. Chem. C 2014, 118, 17914-17921.
[30] S. Drozdek; J. Szeremeta; L. Lamch; M. Nyk; M. Samoc; K. A. Wilk J. Phys. Chem. C 2016, 120, 15460-15470.
[31] T.-C. Lin; Y.-J. Huang; B.-R. Huang; Y.-H. Lee Tetrahedron Lett. 2011, 52, 6748-6753.
[32] T.-C. Lin; W. Chien; C.-Y. Liu; M.-Y. Tsai; Y.-J. Huang Eur. J. Org. Chem. 2013, 4262-4269.
[33] A. Casey; S. D. Dimitrov; P. Shakya-Tuladhar; Z. Fei; M. Nguyen; Y. Han; T. D. Anthopoulos; J. R. Durrant; M. Heeney Chem. Mater. 2016, 28, 5110-5120.
[34] J. Wudarczyk; G. Papamokos; V. Margaritis; D. Schollmeyer; F. Hinkel; M. Baumgarten; G. Floudas; K. Müllen Angew. Chem., Int. Ed. 2016, 55, 3220-3223.
[35] M.-J. Lee; M. S. Kang; M.-K. Shin; J.-W. Park; D. S. Chung; C. E. Park; S.-K. Kwon; Y.-H. Kim J. Polym. Sci. A Polym. Chem. 2010, 48, 3942-3949.
[36] B. A. Reinhardt; L. L. Brott; S. J. Clarson; A. G. Dillard; J. C. Bhatt; R. Kannan; L. Yuan; Guang S. He; P. N. Prasad Chem. Mater. 1998, 10, 1863-1874.
[37] J. P. Wolfe; S. Wagaw; S. L. Buchwald J. Am. Chem. Soc. 1996, 118, 7215-7216.
[38] K. Park; G. Bae; J. Moon; J. Choe; K. H. Song; and S. Lee J. Org. Chem. 2010, 75, 6244-6251.
[39] J. M. Hancock; A. P. Gifford; Y. Zhu; Y. Lou; S. A. Jenekhe Chem. Mater. 2006, 18, 4924-4932.
[40] R. Grisorio; P. Mastrorilli; C. F. Nobile; G. Romanazzi; G. P. Surannaa; E. W. Meijerb Tetrahedron Lett. 2004, 45, 5367-5370.
[41] Y.-Y. Peng; H.-L. Liu; M. Tang; L.-S. Cai; V. Pike Chin. J. Chem. 2009, 27, 1339-1344.
[42] X. Li; D.-H. Wang; J.-F. Wu; W.-F. Xu Synthetic Communications 2005, 35, 2553-2566.
[43] Y. Jiang; Y.-X. Lu; Y.-X. Cui; Q.-F. Zhou; Y. Ma; J. Pei Org. Lett. 2007, 9, 4539-4542.
[44] J.-B. Baek; S. R. Simko; L.-S. Tan Macromolecules 2006, 39, 7959-7966.
[45] J.-J. Shao; J.-J. Chang; C.-Y. Chi Org. Biomol. Chem. 2012, 10, 7045-7052.
[46] C. Burmester; R. Faust Synthesis 2008, 8, 1179-1181.
[47] Tatsuo Ishiyama; Miki Murata; Norio Miyaura J. Org. Chem. 1995, 60, 7508-7510.
[48] B. Kobin; L. Grubert; S. Blumstengel; F. Henneberger; S. Hecht J. Mater. Chem. 2012, 22, 4383-4390.
[49] Yasuhiro Shirai; A. J. Osgood; Y.-M. Zhao; Y.-X. Yao; Lionel Saudan; Hanbiao Yang; Chiu Yu-Hung; L. B. Alemany; Takashi Sasaki; Jean-Francü ois Morin; J. M. Guerrero; K. F. Kelly; J. M. Tour J. Am. Chem. Soc. 2006, 128 , 4854-4864.
[50] Jirı´ Kaleta; Ctibor Mazal Org. Lett. 2011, 13, 1329-1329.
[51] (a) J. G. de Vries; R. M. Kellogg J. Org. Chem. 1980, 45, 4126-4129 (b) Paul G. Gassman; O. M. Rasmy; T. O. Murdock; Katsuhiro Saito J. Org. Chem. 1981, 46, 5457-5458.
[52] L. A. Estrada; D. C. Neckers Org. Lett. 2011, 13, 3304-3307.
[53] T. Qin; G. Zhou. H. Scheiber; R. E. Bauer; M. Baumgarten; C. E. Anson; E. J. W. List; K. Mullen Angew. Chem. Int. Ed. 2008, 47, 8292-8296.
[54] Hayato Sakai; Sho Shinto; Yasuyuki Araki; Takehiko Wada; Tomo Sakanoue; Taishi Takenobu; Taku Hasobe Chem. Eur. J. 2014, 20, 10099-10109.
[55] S. J. Brooks; J. Nikodinovic; L. Martin; E. M. Doyle; T. O’Sullivan; P; J. Guiry; L. Coulombel; Z. Li; K. E. O’Connor Biotechnol Lett 2013, 35, 779-783.
[56] H.-J. Knölkera; E. Baumb; K. R Reddya Tetrahedron Lett. 2000, 41, 1171-1174.
[57] D. W. Kim; H. Y. Choi; K.-J. Lee; and D. Y. Chi Org. Lett. 2001, 3, 445-447.
[58] C.-C. Hsiao; Y.-K. Lin; C.-J. Liu; T.-C. Wu; Y.-T. Wu Adv. Synth. Catal. 2010, 352, 3267-3274.
[59] C. A. Parker; W. T. Rees Analyst 1962, 87, 83-111.
[60] A. Casey; S. D. Dimitrov; P. Shakya-Tuladhar; Z. Fei; M. Nguyen; Y. Han; T. D. Anthopoulos; J. R. Durrant; M. Heeney Chem. Mater. 2016, 28, 5110-5120.
[61] K. G. Casey; E. L. Quitevis J. Phys. Chem. 1988, 92, 6590-6594.
[62] T.-C. Lin; B.-K. Tsai; Y.-Y. Liu; M.-Y. Tsai Eur. J. Org. Chem. 2014, 6163-6174.
[63] N. S. Makarov; M. Drobizhev; G. Wicks; E. A. Makarova; E. A. Lukyanets; A. Rebane J. Chem. Phys. 2013, 138, 214314.
[64] M. Rumi; J. E. Ehrlich; A. A. Heikal; J. W. Perry; S. Barlow; Z.-Y. Hu; D. McCord-Maughon; T. C. Parker; H. Rockel; S. Thayumanavan; S. R. Marder; David Beljonne; Jean-Luc Bredas J. Am. Chem. Soc. 2000, 122, 9500-9510.
[65] C. Xu; W. W. Webb J. Opt. Soc. Am. B 1996, 13, 481-491.
指導教授 林子超(Tsu-Chao Lin) 審核日期 2017-8-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明