博碩士論文 104223041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.225.149.102
姓名 林彥興(Yen-Hsing Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 電場誘導聚碸摻雜複合薄膜之研究
(Electric field induced polysulfone doped in hybrid membrane for vanadium redox flow battery)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 離子交換薄膜一直都是燃料電池、釩液流電池或是各種能量儲存裝置最核心的部分。至今,釩液流電池的質子交換膜仍有幾個缺點有待改善,如(1)提高質子導電度、(2)降低釩離子滲透、(3)良好的耐久穩定性。
本研究利用具有高化學穩定度和機械強度的高分子材料PSU添加至SPEEK高分子中,並在外加電場下鑄造成質子交換膜。結果顯示,添加PSU確實改善複合薄膜的物理性質(降低膨潤率、釩離子滲透等),且經由電場誘導後,SPEEK和PSU高分子受到電場極化,使薄膜中的親水孔道在垂直於薄膜表面的方向形成具有方向性且連續的緻密結構,因為此緻密結構,使大顆粒釩離子更不容易傳遞,更進一步降低釩離子的滲透,提升薄膜的質子選擇率。添加PSU高分子至SPEEK中所製備的有機複合薄膜,在經電場誘導後,S57/PSU-20+E薄膜的釩離子滲透率下降0.195×10−7 cm2/min,質子選擇率達到16.53×104 S min/cm3。在單電池的測試中,S57/PSU-20+E薄膜比起其他薄膜擁有較好的庫倫效率、能量效率,且在經過10圈充放電次數後,電容量保持率也明顯的優於市售的N117。
此一新穎至被薄膜的方法同時改進了多項物性,解決膜材開發面臨的兩難情況,該方法也能廣泛地應用於各種不同再生能源裝置的零件開發。
摘要(英)
The ion exchange membrane is the most important component in fuel cell or vanadium redox flow battery. There are few drawbacks on vanadium redox flow battery membrane. These disadvantages include: (1) Low proton conductivity, (2) High vanadium ion permeability, and (3) Insufficient chemical stability and mechanical strength for prolonged operation.
Present research examined the property of SPEEK and PSU blend and verify its applicability in Redox vanadium flow battery. The use of external electric field poling in the composite polymer system created preferentially ordered channel morphology with high structural integral hydrophobic region in the membrane, which has shown to effectively improved the ion conductivity, reduced the vanadium ion permeation, and raised the mechanical and chemical strength. The study has demonstrated that electric poling treatment created membrane bearing preferentially ordered hydrophilic channel morphology and densely packed hydrophobic region. Due to more densely packed amorphous hydrophobic domain, the membrane showed lower degree of vanadium ion permeability and higher degree of ion selectivity. The composite membrane of S57/PSU-20+E shows the vanadium ion permeability only 0.195×10−7 cm2 min−1, the ion selectivity up to 16.53×104 S min/cm3. In the VRB performance, S57/PSU-20+E membrane shows the better performance in Coulombic Efficiency and Energy Efficiency. After 10 cycles, the discharge capacity retention of S57/PSU-20+E is still superior to N117.
This approach resolved the long standing dilemma of high performance membrane developments encounter in many renewable energy technologies.
關鍵字(中) ★ 質子交換膜
★ 釩逆流電池
★ 磺酸化聚二醚酮
★ 聚碸
關鍵字(英) ★ blend membrane
★ vanadium redox flow battery
★ sulfonated poly(ether ether ketone)
★ polysulfone
論文目次
中文摘要 I
Abstract II
謝誌 IV
目錄 V
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 全釩氧化還原液流電池簡介和組成 2
1-3 全釩氧化還原液流電池原理 3
1-4 研究動機 5
第二章 基本原理與文獻回顧 8
2-1 全釩氧化還原液流電池背景介紹 8
2-1-1 釩電池的優點 8
2-1-2 釩電池的應用 10
2-2 釩電池質子交換膜介紹 12
2-3 質子交換膜的傳遞機制 13
2-4 PFSA系列 15
2-4-1 Nafion/無機複合薄膜 19
2-4-2 Nafion/有機複合薄膜 23
2-5 非PFSA系列 25
2-5-1 碳氫高分子薄膜 26
2-5-2 有機/無機複合高分子薄膜 29
2-5-3 酸鹼複合高分子薄膜 32
2-5-4 團聯共聚高分子 33
2-6 電場誘導性質探討 35
2-6-1 裝置設計及原理 35
2-6-2 外加電場於質子交換膜的應用 36
第三章 實驗方法與原理 40
3-1 實驗儀器及技術原理 40
3-1-1 場發射掃描式電子顯微鏡 (FE-SEM) 40
3-1-2 熱重分析儀 (Thermal Gravimetric Analysis, TGA) 40
3-1-3 薄膜吸水量(Water Uptake)與膨潤率(Swelling) 41
3-1-4 離子交換容量 (Ion Exchange Capacity, IEC) 42
3-1-5 釩離子滲透率 (Vanadium permeability) 42
3-1-6 質子導電度測量 (Proton Conductivity) 44
3-1-7 複合薄膜機械強度測試 44
3-1-8 化學穩定性測試 46
3-2 物質合成及薄膜製備 47
3-2-1 磺酸化聚醚醚酮高分子 47
3-2-2 有機複合薄膜之製備 47
3-2-3 外加電場裝置設計 48
3-2-4 Nafion 117前處理 48
3-3 釩電池組裝 49
3-3-1 電解液製備 49
3-3-2 電池組裝及操數設定 50
3-3-3 常用的性能指標 52
3-4 實驗藥品 53
3-5 樣品命名規則 54
第四章 結果與討論 55
4-1 複合薄膜材料性質與效能分析 56
4-1-1 磺酸化程度的鑑定 56
4-1-2 熱穩定性分析 57
4-1-3 複合薄膜機械效能測試 59
4-1-4 吸水性、膨潤率與離子交換容量(IEC)的比較 60
4-1-5質子導電度與離子交換容量(IEC)的比較 62
4-1-6 釩離子滲透率探討 63
4-1-7 Selectivity薄膜質子選擇率 64
4-1-8 單電池測試 65
4-2 外加電場誘導高分子複合薄膜探討及性質分析 67
4-2-1 SEM薄膜微結構影像 67
4-2-2 熱穩定性分析 69
4-2-3 複合薄膜機械效能測試 70
4-2-4 吸水性及膨潤率與質子導電度比較 71
4-2-5 離子交換容量(IEC) 73
4-2-6 釩離子滲透率 74
4-2-7 Selectivity薄膜質子選擇率 75
4-2-8 化學穩定度測試 76
4-2-9 單電池測試 78
4-2-10 充放電循環測試 80
4-2-11 自放電的測試 83
第五章 結論與未來展望 84
5-1 結論 84
5-2 未來展望與研究建議 86
第六章 參考文獻 88
參考文獻

[1]https://cleantechnica.com/2015/06/21/flow-battery-vs-tesla-battery-smackdown-looming/
[2]方煜馨,「電場誘導聚苯醚碸摻雜複合薄膜之研究」,國立中央大學,碩士論文,民國105年
[3]馬振基、謝曉峰、江仁吉、蕭閔謙、楊士賢及張立學,「新型儲能電池−全釩液流電池的原理與發展現況」,化學,第七十卷第三期,237-246頁,民國101年。
[4]A. K. Sahu, S. Pitchumani, P. Sridhar, A. K. Shukla, ”Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview,” Indian Academy of Science, vol. 32, pp. 285-294, 2009.
[5]吳千舜,「奈米複合離子交換模的離子與分子多尺寸的動態行為之研究」,國立中央大學,博士論文,民國99年。
[6]X. Duan and S. Scheiner, ”Analytic functions fit to proton transfer potentials,” Journal of Molecular Structure, vol. 270, pp. 173-185, 1992.
[7]N. Laurs and P. Bopp, ”Modelling the H3O+-Ion: A Simulation Study of an Aqueous HCl Solution,” Berichte der Bunsengesellschaft für physikalische Chemie, vol. 97, pp. 982-995, 1993.
[8]侯官廷,「磺酸化二氧化鈦奈米管 Nafion 複合質子交換膜及燃料電池應用」,國立中央大學,碩士論文,民國100年。
[9]P. Choi, Nikhil H. Jalani, R. Datta, ”Thermodynamics and Proton Transport in Nafion II. Proton Diffusion Mechanisms and Conductivity,” Journal of The Electrochemical Society, vol. 152, pp. 123-130, 2005.
[10]S. R. Klaus, and Q. Chen, ” Parallel cylindrical water nanochannels in Nafion fuel-cell membranes,” Nature Materials, vol. 7, pp. 75-83, 2008.
[11]J. Xi, Z. Wu, X. Qiu, L. Chen, ”Nafion/SiO2 hybrid membrane for vanadium redox flow battery,” Journal of Power Sources, vol. 166, pp. 531-536, 2007.
[12]X. Teng, Y. Zhao, J. Xi, Z. Wu, X. Qiu, L. Chen, ”Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol–gel reactions,” Journal of Membrane Science, vol. 341, pp. 149-154, 2009.
[13]S. Sang, Q. Wu, K. Huang, ”Preparation of zirconium phosphate (ZrP)/Nafion1135 composite membrane and H+/VO2+ transfer property investigation,” Journal of Membrane Science, vol. 305, pp. 118-124, 2007.
[14]G. Gnana Kumar, A.R. Kim, K. S. Nahm, R. Elizabeth, ”Nafion membranes modified with silica sulfuric acid for the elevated temperature and lower humidity operation of PEMFC,” International Journal of Hydrogen Energy, vol. 34, pp. 9788-9794, 2009.
[15]Q. Luo, H. Zhang, J. Chen, P. Qian, Y. Zhai, ”Modification of Nafion membrane using interfacial polymerization for vanadium redox flow battery applications,” Journal of Membrane Science, vol. 311, pp. 98-103, 2008.
[16]J. Zeng, CP Jiang, YH Wang, JW Chen, SF Zhu, BJ Zhao, R. Wang, ”Studies on polypyrrole modified nafion membrane for vanadium redox flow battery,” Electrochemistry Communications, vol. 10, pp. 372-375, 2008.
[17]Z. S. Mai, H. M. Zhang, X. F. Li, S. H. Xiao, H. Z. Zhang, ”Nafion/polyvinylidene fluoride blend membranes with improved ion selectivity for vanadium redox flow battery application,” Journal of Power Sources, vol. 196, pp. 5737-5741, 2011.
[18]P. G. Khalatur, P. V. Komarov, I. N. Veselov, P. P. Chu, A. R. Khokhlov, ”Atomistic and mesoscale simulation of polymer electrolyte membranes based on sulfonated poly(ether ether ketone),” Chemical Physics Letters, vol. 487, pp. 291-296, 2010.
[19]J. Xi, Z. Li, L. Yu, B. Yin, L. Wang, L. Liu, X. Qiu, L. Chen, ”Effect of degree of sulfonation and casting solvent on sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery,” Journal of Power Sources, vol. 285, pp. 195-204, 2015.
[20]Z. Li, W. Dai, L. Yu, J. Xi, X. Qiu, L. Chen, ”Sulfonated poly(ether ether ketone)/ mesoporous silica hybrid membrane for high performance vanadium redox flow battery,” Journal of Power Sources, vol. 257, pp. 221-229, 2014.
[21]W. Dai, L. Yu, Z. Li, J. Yan, L. Liu, J. Xia, X. Qiu, ”Sulfonated Poly(Ether Ether Ketone) /Graphene composite membranefor vanadium redox flow battery,” Electrochimica Acta, vol.132, pp. 200-207, 2014.
[22]C. Jia, Y. Cheng, X. Ling, G. Wei, J. Liu, C. Yan, ”Sulfonated Poly(Ether Ether Ketone) /Functionalized Carbon Nanotube Composite Membrane for Vanadium Redox Flow Battery Applications,” Electrochimica Acta, vol. 153, pp. 44-48, 2015.
[23]Z. Li, W. Dai, L. Yu, L. Liu, J. Xi, X. Qiu, L. Chen, ”Properties Investigation of Sulfonated Poly(ether ether ketone)/ Polyacrylonitrile Acid−Base Blend Membrane for Vanadium Redox Flow Battery Application,” ACS Appl. Mater. Interfaces, vol. 6(21), pp. 18885-18893, 2014.
[24]S. Liu, L. Wang, Y. Ding, B. Liu, X. Han, Y. Song, ”Novel sulfonated poly(ether ether ketone)/ polyetherimide acid-base blend membranes for vanadium redox flow battery applications,” Electrochimica Acta, vol. 130, pp. 90-96, 2014.
[25]Z. Li, J. Xi, H. Zhou, L. Liu, Z. Wu, X. Qiu, L. Chen, ”Preparation and characterization of sulfonated poly(ether ether ketone)/ poly(vinylidene fluoride) blend membrane for vanadium redox flow battery application,” Journal of Power Sources, vol. 237, pp. 132-140, 2013.
[26]X. Ling, C. Jia, J. Liu, C. Yan, ”Preparation and characterization of sulfonated poly (ether sulfone)/sulfonated poly(ether ether ketone) blend membrane for vanadium redox flow battery,” Journal of Membrane Science, vol. 415-416, pp. 306-312, 2012.
[27]http://www.pjtime.com/2009/10/21543387.shtml.
[28]W. Eerenstein, N. D. Mathur and J. F. Scott, ”Multiferroic and magnetoelectric materials,” Nature, vol. 442, pp. 759-765, 2006.
[29]Holly L. Ricks-Laskoski and Arthur W. Snow, ”Synthesis and Electric Field Actuation of an Ionic Liquid Polymer,” J. AM. CHEM. SOC, vol. 128, pp. 12402-12403, 2006.
[30]G. Chen, H. Wang, H. Zhang, W. Zhao, W. Zhang, ”Preparation of polymer/ oriented graphite nanosheet composite by electric field-inducement,” Composites Science and Technology, vol. 68, pp. 238-243, 2008.
[31]Y. Wang, S. Zhao, J. Ren, J. Zhang, ”Electric field processing to control the structure of titanium oxide/sulfonated poly (ether ether ketone) hybrid proton exchange membranes,” Journal of Membrane Science, vol. 437, pp. 65-71, 2013.
[32]曾御程,「電場誘導一維奈米金屬氧化物複合薄膜之研究」,國立中央大學,碩士論文,民國103年。
[33]D. Liu, M. Z. Yates, ”Tailoring the structure of S-PEEK/PDMS proton conductive membranes through applied electric fields,” Journal of Membrane Science, vol. 322, pp. 256-264, 2008.
指導教授 諸柏仁(Po-jen Chu) 審核日期 2017-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明