博碩士論文 104223062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.118.140.78
姓名 羅婉慈(Wan-Tzu Lo)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用人工固態電解質介面提升鋰離子電池之電性表現及安全性
(Artificial Solid Electrolyte Interface Enhances Lithium Battery Life Cycle and Safety)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為滿足高耗能3C隨身器材及電動汽機車(HEV、EV)的快速發展,鋰離子電池的能量密度和電容量也不斷的提升。因此解決鋰離子電池的循環壽命的不足、高溫下的性能及安全性問題益發急迫。鋰離子電池電解液,會因為在循環過程中,與活性材料發生反應,電解液中的鋰鹽會在高溫環境下受熱而分解,造成鋰離子電池電容損失,若此情形未得到控制,則會持續產生氣體(CO2, H2, CO 等),使內部壓力升高,更嚴重的是產生放熱反應使內部溫度上升,造成燃燒或爆炸等安全問題。故本研究旨在研發一新型電解質添加劑,以1,3-二甲基巴比妥酸(1,3-DBTA)與N,N′-(1,3-亞苯基)二馬來醯亞胺(HVA)和N-苯基馬來醯亞胺(PMI)進行共聚反應而得。此添加劑是具有網狀結構、抗氧化及抗熱等多項功能的新型添加劑(HPKS),可以抑制或延緩電解質的分解情形,以及可在電極上形成穩定的SEI層,來改善鋰離子電池的電性表現及安全性。我們將此電解液添加劑對Li(Ni1/3Mn1/3Co1/3)O2/Li半電池(正極)和Li/MCMB半電池(負極)進行充放電測試,並利用液態核磁共振分析儀(NMR)分析添加劑在高溫下對電解液的影響以及使用電子掃描顯微鏡(SEM)和X-射線光電子光譜(XPS)分析電極表面的型態及組成和電化學主抗頻譜(EIS)觀察其內電組的變化。
另外,也比較了兩款結構不同的添加劑HPKS以及BPMI的效應。HPKS可以生成結構較緻密的人工SEI層,BPMI則生成較蓬鬆的人工SEI層。實驗結果顯示,在室溫環境下,經過80圈充放電後,使用VC為添加劑(UBK)、HPKS添加劑以及BPMI添加劑的電容保持率分別為88.2%、94.5%和96.5%。在高溫(60oC)環境下,經過30圈充放電後,它們的電容保持率分別為93.0%、97.4%和95.1%。
摘要(英)
This study disclosed a novel approach to improve lithium battery life cycle which also eliminated thermal run-away. The formation of artificial solid electrolyte interface (SEI) coating (achieved by several effective approaches) was shown to improve lithium battery cyclic performance at elevated temperature, high rate charge/discharge performance, and mostly avoided thermal run-away. These artificial solid electrolyte modifications with different degree of pore densities are found to exhibit different effects on lithium-ion cell performances using EC: DMC: EMC+VC+ LiPF6-based electrolyte. The study shows the pre-formed solid electrolyte interface on both anode (MCMB) and cathode (NMC=1:1:1), changed the SEI compositions with improved electrochemical stability, that consumes less carbonates and hindered salt decomposition, generates much less HF. The interface composition and structure after pre-formation and after cycling in coin cell is investigated via scanning electron microscope (SEM), electrochemistry impedance spectroscopy (EIS) and cyclic voltammetry (CV) test using both Li(Ni1/3Mn1/3Co1/3)O2/Li half-cell and Li/graphite half-cell. The chemical stability under elevated temperature is characterized by nuclear magnetic resonance (NMR).
We found that this additive formed more stable solid electrolyte interface (SEI) on electrodes during charge and discharge operation, and has prevented electrolyte and lithium salts from decomposition under high temperature operation conditions. Two types of Artificial SEI modifications bearing denser and harder SEI modifications (HPKS) and softer and more elastic SEI modifications (BPMI) are compared. After 80th cycling at room temperature, the capacity retention is found to be 88.2% with VC (vinylene carbonate), 94.5% with HPKS Artificial SEI, and about 96.5% with BPMI Artificial SEI. After 30th cycling at 60oC, the capacity retention is found to be 93.0% with VC Artificial SEI, 97.4% with HPKS Artificial SEI, and about 95.1% with BPMI Artificial SEI.
關鍵字(中) ★ 固態電解質介面 關鍵字(英)
論文目次
摘要 I
Abstract III
謝誌 IV
目錄 V
圖目錄 IX
表目錄 XII
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 3
第二章 文獻回顧 6
2-1 鋰離子電池之液態電解液 6
2-1-1 電解液組成 7
2-1-2 電解液之化學及熱穩定性 10
2-2 固態電解質介面(SEI) 13
2-2-1 負極表面的SEI 14
2-2-2 正極表面的鈍化層 17
2-3 鋰離子電池之安全議題 20
2-3-1 造成安全性議題的原因 20
2-3-2 熱爆衝之反應機制 26
2-3-3 安全性之改善方法 29
2-4 人工固態電解質介面(Artificial SEI) 32
2-5 電解液添加劑 35
2-5-1 改善電極SEI膜性能的添加劑 35
2-5-2 穩定鋰鹽(LiPF6)的添加劑 40
2-5-3 改善鋰離子沉積的添加劑 42
第三章 實驗 43
3-1 實驗藥品、器材與儀器設備 43
3-1-1 實驗藥品 43
3-1-2 實驗器材 45
3-1-3 實驗儀器設備 46
3-2 實驗方法 46
3-2-1 電解液添加劑之製備 47
3-2-2 電解液之配置 49
3-2-3 正/負極極片製作 49
3-2-4 以添加劑包覆正極材料之方法 50
3-2-5 鈕扣型電池之組裝 50
第四章 結果與討論 52
4-1 添加劑之合成與物性探討 52
4-1-1 添加劑之合成鑑定 52
4-1-2 添加劑在電解液中的溶解度及導電度 57
4-1-3 最佳添加量之測試 58
4-2 添加劑對正極的影響 60
4-2-1 室溫下之電性測試 60
4-2-2 變速率充放電測試 61
4-2-3 循環伏安法測試 63
4-2-4 掃描式電子顯微鏡之電極表面型態分析 65
4-2-5 X-光光電子能譜儀之鈍化層探討 67
4-2-6 內阻抗測試 69
4-3 添加劑對負極的影響 71
4-3-1 室溫下之電性測試 71
4-3-2 變速率充放電測試 72
4-3-3 循環伏安法測試 74
4-3-4 掃描式電子顯微鏡之電極表面型態分析 76
4-3-5 X-光光電子能譜儀之鈍化層探討 78
4-3-6 內阻抗測試 79
4-4 添加劑對高溫(60oC)時的影響 81
4-4-1 NMC/Li高溫電性測試 81
4-4-2 Li/MCMB高溫電性測試 82
4-4-3 高溫下添加劑對電解液的影響 84
4-5 全電池測試 86
4-6 比較HPKS與BPMI對電性的影響 87
4-6-1 室溫下的循環壽命比較 87
4-6-2 高溫下的循環壽命比較 89
4-7 以包覆方式形成人工SEI層 91
第五章 結論與未來展望 95
參考文獻 97
參考文獻

1. Pallavi Verma, P.M., Petr Novák, Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality. Electrochimica Acta, 2011. 56(10): p. 3555–3561.
2. Pallavi Verma, P.N., Formation of artificial solid electrolyte interphase by grafting for improving Li-ion intercalation and preventing exfoliation of graphite. CARBON, 2012. 50(7): p. 2599-2614.
3. S. Menkina, D.G., b, E. Peleda, Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium–ion cells for EV applications. Electrochemistry Communications, 2009. 11(9): p. 1789–1791.
4. Wentao Li, C.C., Brett L. Lucht, Boris Ravdel, Joseph DiCarlo and K. M. Abraham, Additives for Stabilizing LiPF6-Based Electrolytes Against Thermal Decomposition. J. Electrochem. Soc., 2005. 152(7): p. A1361-A1365.
5. Kang Xu, M.S.D., T. Richard Jow, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev., 2004. 104: p. 4303-4417.
6. Rauh, R.D.B., S. B., The effect of additives on lithium cycling in methyl acetate. Electrochimica Acta, 1977. 22(1): p. 85-91.
7. Kang Xu, S.P.D., T. Richard Jow, Toward Reliable Values of Electrochemical Stability Limits for Electrolytes. J. Electrochem. Soc., 1999. 146(11): p. 4172-4178.
8. Kang Xu, M.S.D., T. Richard Jow, Quaternary Onium Salts as Nonaqueous Electrolytes for Electrochemical Capacitors. J. Electrochem. Soc., 2001. 148(3): p. A267-A274.
9. Mori, M.U.a.S., Mobility and Ionic Association of Lithium Salts in a Propylene Carbonate-Ethyl Methyl Carbonate Mixed Solvent. J. Electrochem. Soc., 1995. 142(8): p. 2577-2581.
10. Schmidt, M.H., U.; Kuehner, A.; Oesten, R.; Jungnitz, M.; Ignat’ev, N.; Sartori, P., Lithium-Ion Batteries: Advances and Applications. J. Power Sources, 2001. 97–98: p. 557.
11. Ue, M., Mobility and Ionic Association of Lithium and Quaternary Ammonium Salts in Propylene Carbonate and γ‐Butyrolactone. J. Electrochem. Soc., 1994. 141(12): p. 3336-3342.
12. K. M. Abraham, J.L.G., D. I.. Natwig Characterization of Ether Electrolytes for Rechargeable Lithium Cells J. Electrochem. Soc, 1982. 129(11): p. 2404-2409.
13. Christopher L. Campion, W.L., Brett L. Lucht, Thermal Decomposition of LiPF6-Based Electrolytes for Lithium-Ion Batteries. Journal of The Electrochemical Society, 2005. 152(12): p. A2327-A2334.
14. Jian Yan, J.Z., Yu-Chang Su, Xi-Gui Zhang, Bao-Jia Xia, A novel perspective on the formation of the solid electrolyte interphase on the graphite electrode for lithium-ion batteries. Electrochimica Acta 55, 2010. 55(5): p. 1785-1794.
15. Doron Aurbach, M.D.L., Elena Levi, and Alexander Schechter, Failure and Stabilization Mechanisms of Graphite Electrodes. J. Phys. Chem. B, 1997. 101: p. 2195-2206.
16. D. Aurbach, B.M., I. Weissman, E. Levi , Y. Ein-Eli, On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochimica Acta, 1999. 45: p. 67-86.
17. Sullivan, A.N.D.a.B.P., The Electrochemical Decomposition of Propylene Carbonate on Graphite. J. Electrochem. Soc., 1970. 117: p. 222-224.
18. J.O. Besenhard , M.W., j. Yang, W. Biberacher, Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. Journal of Power Sources, 1995. 54: p. 228-231.
19. Geun-Chang Chung, H.-J.K., Seung-Il Yu, Song-Hui Jun, Jong-wook Choi, and Myung-Hwan Kim, Origin of Graphite Exfoliation An Investigation of the Important Role of Solvent Cointercalation. Journal of The Electrochemical Society, 2000. 147(12): p. 4391-4398.
20. J. Yan, B.-J.X., Y.-C. Su, X.-Z. Zhou, et al, Phenomenologically modeling the formation and evolution of the solid electrolyte interface on the graphite electrode for lithium-ion batteries. Electrochimica Acta, 2008. 53(24): p. 7069-7078.
21. Doron Aurbach, K.G., Boris Markovsky, Gregory Salitra, Yossi Gofer, Udo Heider, Ruediger Oesten, and Michael Schmidt, The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into LixMOy Host Materials (M 5 Ni, Mn). Journal of The Electrochemical Society, 2000. 147(4): p. 1322-1331.
22. Aurbach, D.G., K.; Markovsky, B.; Salitra, G.; Gofer,Y.; Heider, U.; Oesten, R.; Schmidt, M., The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into LixMOy Host Materials (M 5 Ni, Mn). Journal of The Electrochemical Society, 2000. 147(4): p. 1322-1331
23. Dahn, J.N.R.a.J.R., Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in LixCoO2. J. Electrochem. Soc., 1992. 139(8): p. 2091-2097.
24. M. S. Wu, P.C.J.C., and J. C. Lin, Electrochemical investigations on advanced lithium-ion batteries by three-electrode measurements. J. Electrochem. Soc, 2005. 152(1): p. A47-A52.
25. K. Kumai, H.M., Y. Kobayashi, K. Takei, and R. Ishikawa, Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell. J. Power Sources, 1999. 81-82: p. 715–719.
26. J. I. Yamaki, S.I.T., K. Hayashi, S. Keiichi, Y. Nemoto, and M. Arakawa, A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. Journal of Power Sources, 1998. 74(2): p. 219-227.
27. D. D. MacNeil, Z.L., Z. Chen, and J. R. Dahn, A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. Journal of Power Sources, 2002. 108(1-2): p. 8-14.
28. R. A. Leising, M.J.P., E. S. Takeuchi, and K. J. Takeuchi, A study of the overcharge reaction of lithium-ion batteries. Journal of Power Sources, 2001. 97-98: p. 681–683.
29. F. Orsini, A.D.P., B. Beaudoin, J. M. Tarascon, M. Trentin, N. Langenhuizen, E. De Beer, and P. Notten, In situ scanning electron microscopy (SEM) observation of interfaces within plastic lithium batteries. Journal of Power Sources, 1988. 76(1): p. 19–29.
30. M. Rosso, C.B., A. Teyssot, M. Dollé, L. Sannier, J.-M. Tarascon, R. Bouchet, and S. Lascaud, Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochimica Acta, 2006. 51(25): p. 5334-5340.
31. J. S. Shin, C.H.H., U. H. Jung, S. I. Lee, H. J. Kim, and K. Kim, Effect of Li2CO3 additive on gas generation in lithium-ion batteries. Journal of Power Sources, 2002. 109(1): p. 47–52.
32. K. Kumai, H.M., Y. Kobayashi, K. Takei, and R. Ishikawa, Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell. Journal of Power Sources, 1999. 81-82: p. 715–719.
33. T. Ohsaki, T.K., T. Kuboki, N. Takami, N. Shimura, Y. Sato, M. Sekino, and A. Satoh, Overcharge reaction of lithium-ion batteries. Journal of Power Sources, 2005. 146: p. 97-100.
34. M. Onuki, S.K., Y. Sakata, M. Yanagidate, Y. Otake, M. Ue, and M. Deguchi, Identification of the Source of Evolved Gas in Li-Ion Batteries Using 13C-labeled Solvents. Journal of The Electrochemical Society, 2008. 155(11): p. A794-A797.
35. A. Hammami, N.R., and M. Armand, Lithium-ion batteries: Runaway risk of forming toxic compounds. Nature, 2003. 424: p. 635-636.
36. D. Aurbach, A.Z., Y. Ein-Eli, I. Weissman, O. Chusid, B. Markovsky, M. Levi, E. Levi, A. Schechter, E. Granot, Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systemsOriginal Research Article. Journal of Power Sources, 1997. 68: p. 91-98.
37. Qingsong Wang, J.S., Xiaolin Yao, and Chunhua Chen, Thermal Behavior of Lithiated Graphite with Electrolyte in Lithium-Ion Batteries. J. Electrochem. Soc, 2006. 153(2): p. A329-A333.
38. Sang-Young Lee, S.K.K., Soonho Ahn, Performances and thermal stability of LiCoO2 cathodes encapsulated by a new gel polymer electrolyteOriginal Research Article. Journal of Power Sources, 2007. 174(2): p. 480–483.
39. Qingsong Wang, J.S., Xiaolin Yao, Chunhua Chen, Thermal stability of LiPF6/EC + DEC electrolyte with charged electrodes for lithium ion batteriesOriginal Research Article. Thermochimica Acta, 2005. 437: p. 12–16.
40. G. GirishKumar, W.H.B., B. K. Peterson, and W. J. Casteel, Electrochemical and Spectroscopic Investigations of the Overcharge Behavior of StabiLife Electrolyte Salts in Lithium-Ion Batteries. J. Electrochem. Soc, 2011. 158(2): p. A146-A153.
41. J. Chen, C.B., and J. R. Dahn, Chemical overcharge and overdischarge protection for lithium-ion batteries. Electrochem. Solid-State Lett, 2005. 8(1): p. A59-A62.
42. C. Buhrmester, L.M., R. L. Wang, and J. R. Dahn, Phenothiazine molecules. J. Electrochem. Soc., 2006. 153: p. A288.
43. C. Buhrmester, L.M.M., R. L. Wang, and J. R. and Dahn;, The Use of 2,2,6,6-Tetramethylpiperinyl-Oxides and Derivatives for Redox Shuttle Additives in Li-Ion Cells. J. Electrochem. Soc, 2006. 153(10): p. A1800-A1804.
44. X. L. Yao, S.X., C. H. Chen, Q. S. Wang, J. H. Sun, Y. L. Li, and S. X. Lu, Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries. Journal of Power Sources, 2005. 144(1): p. 170-175.
45. H. F. Xiang, Q.Y.J., C. H. Chen, X. W. Ge, S. Guo, and J. H. Sun, Dimethyl methylphosphonate-based nonflammable electrolyte and high safety lithium-ion batteries. Journal of Power Sources, 2007. 174(1): p. 335–341.
46. Y. Ein-Eli, S.F.M., D. Aurbach, B. Markovsky and A. Schecheter, Methyl Propyl Carbonate: A Promising Single Solvent for Li‐Ion Battery Electrolytes. Journal of The Electrochemical Society, 1997. 144(7): p. L180-L184.
47. S.S. Zhang, K.X., T.R. Jow, EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochimica Acta, 2006. 51(8-9): p. 1636–1640.
48. Zhang, S.S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006. 162: p. 1379–1394.
49. J.T. Lee, M.S.W., F.M.Wang, Y.W. Lin, M.Y. Bai, P.C. Chiang, Effects of Aromatic Esters as Propylene Carbonate-Based Electrolyte Additives in Lithium-Ion Batteries. J. Electrochem. Soc., 2005. 152(9): p. A1837-A1843.
50. C. Wang, H.N., H. Komatsu, M. Yoshio, H. Yoshitake, Electrochemical behaviour of a graphite electrode in propylene carbonate and 1,3-benzodioxol-2-one based electrolyte system. Journal of Power Sources, 1998. 74(1): p. 142-145.
51. A.M. Andersson, K.E., Chemical Composition and Morphology of the Elevated Temperature SEI on Graphite. J. Electrochem. Soc., 2001. 148(10): p. A1100-A1109.
52. X. Sun, H.S.L., X.Q. Yang, J. McBreen, The Compatibility of a Boron-Based Anion Receptor with the Carbon Anode in Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2003. 6(2): p. A43-A46.
53. H.S. Lee, X.Q.Y., C.L. Xiang, J. McBreen, L.S. Choi, The Synthesis of a New Family of Boron‐Based Anion Receptors and the Study of Their Effect on Ion Pair Dissociation and Conductivity of Lithium Salts in Nonaqueous Solutions. J. Electrochem. Soc., 1998. 145(8): p. 2813-2818.
54. O. Hiroi, K.H., Y. Yoshida, S. Yoshioka, H. Shiota, J. Aragane, S.Aihara, D. Takemura, T. Nishimura, M. Kise, H. Urushibata, H. Adachi, U.S. Patent 6,305,540. 2001.
55. S.S. Zhang, K.X., T.R. Jow, The low temperature performance of Li-ion batteries. Journal of Power Sources, 2003. 115(1): p. 137-140.
56. Xianming Wang, H.N., Yoshitsugu Sone, Go Segami, and Saburo Kuwajima, New Additives to Improve the First-Cycle Charge–Discharge Performance of a Graphite Anode for Lithium-Ion Cells. J. Electrochem. Soc., 2005. 152(10): p. A1996-A2001.
57. K. Appel, S.P., U.S. Patent 6,159,640 2000.
58. W. Li, C.C., B.L. Lucht, B. Ravdel, J. DiCarlo, K.M. Abrahamb, Additives for Stabilizing LiPF6-Based Electrolytes Against Thermal Decomposition. J. Electrochem. Soc., 2005. 152(7): p. A1361-A1365.
59. KM Abraham, J.F., JL Goldman, Long Cycle Life Secondary Lithium Cells Utilizing Tetrahydrofuran. J. Electrochem. Soc, 1984. 131: p. 2197.
60. M. Morita, S.A., Y. Matsuda, ac imepedance behaviour of lithium electrode in organic electrolyte solutions containing additives. Electrochimica Acta, 1992. 37(1): p. 119-123.
61. R.D. Rauh, S.B.B., The effect of additives on lithium cycling in propylene carbonate. Electrochimica Acta, 1977. 22(1): p. 75-83.
指導教授 諸柏仁(Po-Jen Chu) 審核日期 2017-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明