參考文獻 |
1. Pallavi Verma, P.M., Petr Novák, Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality. Electrochimica Acta, 2011. 56(10): p. 3555–3561.
2. Pallavi Verma, P.N., Formation of artificial solid electrolyte interphase by grafting for improving Li-ion intercalation and preventing exfoliation of graphite. CARBON, 2012. 50(7): p. 2599-2614.
3. S. Menkina, D.G., b, E. Peleda, Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium–ion cells for EV applications. Electrochemistry Communications, 2009. 11(9): p. 1789–1791.
4. Wentao Li, C.C., Brett L. Lucht, Boris Ravdel, Joseph DiCarlo and K. M. Abraham, Additives for Stabilizing LiPF6-Based Electrolytes Against Thermal Decomposition. J. Electrochem. Soc., 2005. 152(7): p. A1361-A1365.
5. Kang Xu, M.S.D., T. Richard Jow, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev., 2004. 104: p. 4303-4417.
6. Rauh, R.D.B., S. B., The effect of additives on lithium cycling in methyl acetate. Electrochimica Acta, 1977. 22(1): p. 85-91.
7. Kang Xu, S.P.D., T. Richard Jow, Toward Reliable Values of Electrochemical Stability Limits for Electrolytes. J. Electrochem. Soc., 1999. 146(11): p. 4172-4178.
8. Kang Xu, M.S.D., T. Richard Jow, Quaternary Onium Salts as Nonaqueous Electrolytes for Electrochemical Capacitors. J. Electrochem. Soc., 2001. 148(3): p. A267-A274.
9. Mori, M.U.a.S., Mobility and Ionic Association of Lithium Salts in a Propylene Carbonate-Ethyl Methyl Carbonate Mixed Solvent. J. Electrochem. Soc., 1995. 142(8): p. 2577-2581.
10. Schmidt, M.H., U.; Kuehner, A.; Oesten, R.; Jungnitz, M.; Ignat’ev, N.; Sartori, P., Lithium-Ion Batteries: Advances and Applications. J. Power Sources, 2001. 97–98: p. 557.
11. Ue, M., Mobility and Ionic Association of Lithium and Quaternary Ammonium Salts in Propylene Carbonate and γ‐Butyrolactone. J. Electrochem. Soc., 1994. 141(12): p. 3336-3342.
12. K. M. Abraham, J.L.G., D. I.. Natwig Characterization of Ether Electrolytes for Rechargeable Lithium Cells J. Electrochem. Soc, 1982. 129(11): p. 2404-2409.
13. Christopher L. Campion, W.L., Brett L. Lucht, Thermal Decomposition of LiPF6-Based Electrolytes for Lithium-Ion Batteries. Journal of The Electrochemical Society, 2005. 152(12): p. A2327-A2334.
14. Jian Yan, J.Z., Yu-Chang Su, Xi-Gui Zhang, Bao-Jia Xia, A novel perspective on the formation of the solid electrolyte interphase on the graphite electrode for lithium-ion batteries. Electrochimica Acta 55, 2010. 55(5): p. 1785-1794.
15. Doron Aurbach, M.D.L., Elena Levi, and Alexander Schechter, Failure and Stabilization Mechanisms of Graphite Electrodes. J. Phys. Chem. B, 1997. 101: p. 2195-2206.
16. D. Aurbach, B.M., I. Weissman, E. Levi , Y. Ein-Eli, On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochimica Acta, 1999. 45: p. 67-86.
17. Sullivan, A.N.D.a.B.P., The Electrochemical Decomposition of Propylene Carbonate on Graphite. J. Electrochem. Soc., 1970. 117: p. 222-224.
18. J.O. Besenhard , M.W., j. Yang, W. Biberacher, Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. Journal of Power Sources, 1995. 54: p. 228-231.
19. Geun-Chang Chung, H.-J.K., Seung-Il Yu, Song-Hui Jun, Jong-wook Choi, and Myung-Hwan Kim, Origin of Graphite Exfoliation An Investigation of the Important Role of Solvent Cointercalation. Journal of The Electrochemical Society, 2000. 147(12): p. 4391-4398.
20. J. Yan, B.-J.X., Y.-C. Su, X.-Z. Zhou, et al, Phenomenologically modeling the formation and evolution of the solid electrolyte interface on the graphite electrode for lithium-ion batteries. Electrochimica Acta, 2008. 53(24): p. 7069-7078.
21. Doron Aurbach, K.G., Boris Markovsky, Gregory Salitra, Yossi Gofer, Udo Heider, Ruediger Oesten, and Michael Schmidt, The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into LixMOy Host Materials (M 5 Ni, Mn). Journal of The Electrochemical Society, 2000. 147(4): p. 1322-1331.
22. Aurbach, D.G., K.; Markovsky, B.; Salitra, G.; Gofer,Y.; Heider, U.; Oesten, R.; Schmidt, M., The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into LixMOy Host Materials (M 5 Ni, Mn). Journal of The Electrochemical Society, 2000. 147(4): p. 1322-1331
23. Dahn, J.N.R.a.J.R., Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in LixCoO2. J. Electrochem. Soc., 1992. 139(8): p. 2091-2097.
24. M. S. Wu, P.C.J.C., and J. C. Lin, Electrochemical investigations on advanced lithium-ion batteries by three-electrode measurements. J. Electrochem. Soc, 2005. 152(1): p. A47-A52.
25. K. Kumai, H.M., Y. Kobayashi, K. Takei, and R. Ishikawa, Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell. J. Power Sources, 1999. 81-82: p. 715–719.
26. J. I. Yamaki, S.I.T., K. Hayashi, S. Keiichi, Y. Nemoto, and M. Arakawa, A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. Journal of Power Sources, 1998. 74(2): p. 219-227.
27. D. D. MacNeil, Z.L., Z. Chen, and J. R. Dahn, A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. Journal of Power Sources, 2002. 108(1-2): p. 8-14.
28. R. A. Leising, M.J.P., E. S. Takeuchi, and K. J. Takeuchi, A study of the overcharge reaction of lithium-ion batteries. Journal of Power Sources, 2001. 97-98: p. 681–683.
29. F. Orsini, A.D.P., B. Beaudoin, J. M. Tarascon, M. Trentin, N. Langenhuizen, E. De Beer, and P. Notten, In situ scanning electron microscopy (SEM) observation of interfaces within plastic lithium batteries. Journal of Power Sources, 1988. 76(1): p. 19–29.
30. M. Rosso, C.B., A. Teyssot, M. Dollé, L. Sannier, J.-M. Tarascon, R. Bouchet, and S. Lascaud, Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochimica Acta, 2006. 51(25): p. 5334-5340.
31. J. S. Shin, C.H.H., U. H. Jung, S. I. Lee, H. J. Kim, and K. Kim, Effect of Li2CO3 additive on gas generation in lithium-ion batteries. Journal of Power Sources, 2002. 109(1): p. 47–52.
32. K. Kumai, H.M., Y. Kobayashi, K. Takei, and R. Ishikawa, Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell. Journal of Power Sources, 1999. 81-82: p. 715–719.
33. T. Ohsaki, T.K., T. Kuboki, N. Takami, N. Shimura, Y. Sato, M. Sekino, and A. Satoh, Overcharge reaction of lithium-ion batteries. Journal of Power Sources, 2005. 146: p. 97-100.
34. M. Onuki, S.K., Y. Sakata, M. Yanagidate, Y. Otake, M. Ue, and M. Deguchi, Identification of the Source of Evolved Gas in Li-Ion Batteries Using 13C-labeled Solvents. Journal of The Electrochemical Society, 2008. 155(11): p. A794-A797.
35. A. Hammami, N.R., and M. Armand, Lithium-ion batteries: Runaway risk of forming toxic compounds. Nature, 2003. 424: p. 635-636.
36. D. Aurbach, A.Z., Y. Ein-Eli, I. Weissman, O. Chusid, B. Markovsky, M. Levi, E. Levi, A. Schechter, E. Granot, Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systemsOriginal Research Article. Journal of Power Sources, 1997. 68: p. 91-98.
37. Qingsong Wang, J.S., Xiaolin Yao, and Chunhua Chen, Thermal Behavior of Lithiated Graphite with Electrolyte in Lithium-Ion Batteries. J. Electrochem. Soc, 2006. 153(2): p. A329-A333.
38. Sang-Young Lee, S.K.K., Soonho Ahn, Performances and thermal stability of LiCoO2 cathodes encapsulated by a new gel polymer electrolyteOriginal Research Article. Journal of Power Sources, 2007. 174(2): p. 480–483.
39. Qingsong Wang, J.S., Xiaolin Yao, Chunhua Chen, Thermal stability of LiPF6/EC + DEC electrolyte with charged electrodes for lithium ion batteriesOriginal Research Article. Thermochimica Acta, 2005. 437: p. 12–16.
40. G. GirishKumar, W.H.B., B. K. Peterson, and W. J. Casteel, Electrochemical and Spectroscopic Investigations of the Overcharge Behavior of StabiLife Electrolyte Salts in Lithium-Ion Batteries. J. Electrochem. Soc, 2011. 158(2): p. A146-A153.
41. J. Chen, C.B., and J. R. Dahn, Chemical overcharge and overdischarge protection for lithium-ion batteries. Electrochem. Solid-State Lett, 2005. 8(1): p. A59-A62.
42. C. Buhrmester, L.M., R. L. Wang, and J. R. Dahn, Phenothiazine molecules. J. Electrochem. Soc., 2006. 153: p. A288.
43. C. Buhrmester, L.M.M., R. L. Wang, and J. R. and Dahn;, The Use of 2,2,6,6-Tetramethylpiperinyl-Oxides and Derivatives for Redox Shuttle Additives in Li-Ion Cells. J. Electrochem. Soc, 2006. 153(10): p. A1800-A1804.
44. X. L. Yao, S.X., C. H. Chen, Q. S. Wang, J. H. Sun, Y. L. Li, and S. X. Lu, Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries. Journal of Power Sources, 2005. 144(1): p. 170-175.
45. H. F. Xiang, Q.Y.J., C. H. Chen, X. W. Ge, S. Guo, and J. H. Sun, Dimethyl methylphosphonate-based nonflammable electrolyte and high safety lithium-ion batteries. Journal of Power Sources, 2007. 174(1): p. 335–341.
46. Y. Ein-Eli, S.F.M., D. Aurbach, B. Markovsky and A. Schecheter, Methyl Propyl Carbonate: A Promising Single Solvent for Li‐Ion Battery Electrolytes. Journal of The Electrochemical Society, 1997. 144(7): p. L180-L184.
47. S.S. Zhang, K.X., T.R. Jow, EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochimica Acta, 2006. 51(8-9): p. 1636–1640.
48. Zhang, S.S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006. 162: p. 1379–1394.
49. J.T. Lee, M.S.W., F.M.Wang, Y.W. Lin, M.Y. Bai, P.C. Chiang, Effects of Aromatic Esters as Propylene Carbonate-Based Electrolyte Additives in Lithium-Ion Batteries. J. Electrochem. Soc., 2005. 152(9): p. A1837-A1843.
50. C. Wang, H.N., H. Komatsu, M. Yoshio, H. Yoshitake, Electrochemical behaviour of a graphite electrode in propylene carbonate and 1,3-benzodioxol-2-one based electrolyte system. Journal of Power Sources, 1998. 74(1): p. 142-145.
51. A.M. Andersson, K.E., Chemical Composition and Morphology of the Elevated Temperature SEI on Graphite. J. Electrochem. Soc., 2001. 148(10): p. A1100-A1109.
52. X. Sun, H.S.L., X.Q. Yang, J. McBreen, The Compatibility of a Boron-Based Anion Receptor with the Carbon Anode in Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2003. 6(2): p. A43-A46.
53. H.S. Lee, X.Q.Y., C.L. Xiang, J. McBreen, L.S. Choi, The Synthesis of a New Family of Boron‐Based Anion Receptors and the Study of Their Effect on Ion Pair Dissociation and Conductivity of Lithium Salts in Nonaqueous Solutions. J. Electrochem. Soc., 1998. 145(8): p. 2813-2818.
54. O. Hiroi, K.H., Y. Yoshida, S. Yoshioka, H. Shiota, J. Aragane, S.Aihara, D. Takemura, T. Nishimura, M. Kise, H. Urushibata, H. Adachi, U.S. Patent 6,305,540. 2001.
55. S.S. Zhang, K.X., T.R. Jow, The low temperature performance of Li-ion batteries. Journal of Power Sources, 2003. 115(1): p. 137-140.
56. Xianming Wang, H.N., Yoshitsugu Sone, Go Segami, and Saburo Kuwajima, New Additives to Improve the First-Cycle Charge–Discharge Performance of a Graphite Anode for Lithium-Ion Cells. J. Electrochem. Soc., 2005. 152(10): p. A1996-A2001.
57. K. Appel, S.P., U.S. Patent 6,159,640 2000.
58. W. Li, C.C., B.L. Lucht, B. Ravdel, J. DiCarlo, K.M. Abrahamb, Additives for Stabilizing LiPF6-Based Electrolytes Against Thermal Decomposition. J. Electrochem. Soc., 2005. 152(7): p. A1361-A1365.
59. KM Abraham, J.F., JL Goldman, Long Cycle Life Secondary Lithium Cells Utilizing Tetrahydrofuran. J. Electrochem. Soc, 1984. 131: p. 2197.
60. M. Morita, S.A., Y. Matsuda, ac imepedance behaviour of lithium electrode in organic electrolyte solutions containing additives. Electrochimica Acta, 1992. 37(1): p. 119-123.
61. R.D. Rauh, S.B.B., The effect of additives on lithium cycling in propylene carbonate. Electrochimica Acta, 1977. 22(1): p. 75-83. |