博碩士論文 104223047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.15.239.145
姓名 徐子閎(Tzu-Hung Hsu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 尋找應用於染料敏化太陽能電池之藍色染料
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 染料敏化太陽能電池(dye-sensitized solar cells, DSC)由於具有多色彩性、半透光性、可撓曲性與低製造成本等優點,是目前相當熱門的研究領域之一。而應用在染料敏化太陽能電池之藍色染料較少見。本實驗室先前合成出以benzothienoisoindigo (BTI)單元為輔助拉電子基的BTI-3、BTI-5和BTI-6皆因最大吸收波長太長,在DMSO中呈現藍綠色。本研究是以BTI-3作為基本結構出發,將BTI單元中的Thiophene由靠近於推電子基改為靠近於拉電子基,設計出BTI-4,使其最大吸收波長藍位移。再來以BTI-3及BTI-5作為基本結構,分別在推電子基及輔助拉電子基(Aa)中間插入一個苯環,合成出BTI-7及BTI-13,藉由染料的平面性下降而使最大吸收波長藍位移。再以BTI-13為基本結構,將推電子基換成正己基或溴基,設計出BTI-15和BTI-17,利用較弱的推電子基及降低染料分子的共軛長度,使染料之最大吸收波長藍位移。結果顯示BTI-4在DMSO中之最大吸收波長比BTI-3短,呈現較接近藍色的藍綠色。BTI-7和BTI-13的最大吸收波長都比相對的BTI-3及BTI-5的短,在DMSO中也都呈現藍綠色,但比BTI-3及BTI-5更接近藍色。BTI-15及BTI-17在DMSO中的顏色比BTI-13更接近藍色,其中含最弱推電子基的BTI-17呈現深藍色。而將染料吸附在TiO2後,因其最大吸收波長產生藍位移,BTI-4與BTI-7呈現綠色,BTI-13、BTI-15與BTI-17之元件呈現紅色。雖然BTI系列染料的LUMO能階都不高,但可透過電解質優化,使TiO2的導帶能階下降,提高染料受光激發的電子注入至TiO2導帶能階的驅動力。其中,有最高莫耳吸收係數乘以染料吸附量和吸附在TiO2有高覆蓋度的BTI-13所組裝之元件有最高的光電轉換效率達4.41%。
摘要(英) Dye-sensitized solar cell (DSC) is a hot research topic because of its multicoloured, semi-transparent, flexible and low cost. A lot of studies are related to find new sensitizers nevertheless blue dye is relatively rare. In this thesis, we focus on the synthesis of blue dyes for DSC. Our previous study showed that BTI-3, BTI-5 and BTI-6 with benzothienoisoindigo (BTI) unit as an auxiliary acceptor (Aa) are blue-green in DMSO due to their λmax values are too long. To blue-shift the λmax of the dyes, BTI-4 is design by changing the position of acceptor part to be connected to the thiophene of BTI unit instead of connecting to the benzene. The λmax value of BTI-4 is smaller than that of BTI-3, but still in blue-green when dissolved in DMSO. BTI-7 and BTI-13 are prepared by inserting an additional phenyl unit between donor and Aa of BTI-3 and BTI-5, respectively. The λmax values of both BTI-7 and BTI-13 are smaller than those of BTI-3 and BTI-5. However, the color of BTI-7 and BTI-13 in DMSO is still blue-green. Finally we prepared BTI-15 and BTI-17 by using n-hexyl and bromide as donor instead of fluorene, respectively. The λmax value of BTI-15 is blue-shifted in DMSO but the color is still blue-green, nevertheless BTI-17 in DMSO is blue. BTI-4 and BTI-7 adsorbed on TiO2 film is green, BTI-13, BTI-15, and BTI-17 adsorbed on TiO2 film is red. These five dyes were used as sensitizers for DSC, BTI-13 has the highest conversion efficiency of 4.41%, due to its high molar absorption coefficient and large dye loading which leads to high surface coverage of when adsorbed on TiO2 film.
關鍵字(中) ★ 染料敏化太陽能電池
★ 藍色染料
關鍵字(英) ★ dye-sensitized solar cell
★ blue dye
★ benzothienoisoindigo
論文目次 摘要 I
Abstract II
摘要圖 III
謝誌 IV
圖目錄 IX
表目錄 XIII
壹、序論 1
1-1、前言 1
1-2、太陽能電池的種類 1
1-3、染料敏化太陽能電池簡介 2
1-4、光電轉換效率(η)的量測 4
1-4-1、標準太陽光 4
1-4-2、光電轉換效率(η) 5
1-4-3、外部量子產率(External Quantum Efficiency, EQE) 6
1-5、用於染料敏化太陽能電池中之染料的特性 7
1-5-1、無機染料 7
1-5-2、紫質染料 9
1-5-3、有機染料 10
1-6、染料之顏色 12
1-6-1、染料敏化太陽能電池的色彩 12
1-6-2、色彩學 13
1-7、應用於DSC之藍色染料 13
1-7-1、以diketopyrrolopyrrole (DPP)為輔助拉電子基(Aa)之藍色染料 14
1-7-2、以[1,2,5]Thiadiazolo[3,4-c]pyridine為輔助拉電子基之藍色染料 16
1-8、應用於太陽能電池之含Isoindigo單元的分子 17
1-9、應用於太陽能電池之含Benzothienoisoindigo單元的分子 20
1-9-1本實驗室先前以Benzothienoisoindigo單元設計出的DSC染料 22
1-10、在染料分子的推電子基與輔助拉電子基之間插入苯環使染料之最大吸收波長變短及提高LUMO能階 24
1-11、研究動機 26
貳、實驗部分 28
2-1、實驗藥品 28
2-2、產物與中間產物之結構與簡稱 30
2-3、實驗步驟 37
2-3-1、Carbazole-Et-B的合成,如Scheme 2.1所示 37
2-3-2、BTI-2R-Br的合成,如Scheme 2.2所示 39
2-3-3、BTI-4的合成,如Scheme 2.3所示 41
2-3-4、Br-BTI-Ph-CHO的合成,如Scheme 2.4所示 44
2-3-5、BTI-7的合成,如Scheme 2.5所示 46
2-3-6、BTI-13的合成,如Scheme 2.6所示 48
2-3-7、BTI-15的合成,如Scheme 2.7所示 50
2-3-8、BTI-17的合成,如Scheme 2.8所示 52
2-4、儀器分析與樣品製備 53
2-4-1、核磁共振光譜儀(Nuclear Magnetic Resonance) 53
2-4-2、紫外光/可見光吸收光譜儀(UV/Vis Spectrometer) 53
2-4-3、螢光分光光譜儀(Fluorescence Spectrophotometer) 54
2-4-4、電化學測量裝置(Electrochemical Measurement System) 55
2-4-5、太陽光模擬器與元件I-V曲線量測系統(Solar Simulator and I-V measuring system) 56
2-4-6、太陽能電池外部量子效率量測系統(Incident Photon to Current Conversion Efficieny, IPCE measurement) 57
2-4-7、交流阻抗分析﹙Electrochemical-Impedance Analysis, EIS﹚ 57
參、結果與討論 60
3-1、合成BTI系列染料遭遇之問題 60
3-1-1、Car-BTI-Br之合成 60
3-1-2、BTI-4之合成 61
3-2、BTI系列染料之光學性質探討 61
3-3、BTI系列染料之前置軌域能階 67
3-4、BTI系列染料的前置軌域分布 72
3-5、以BTI-4、BTI-7、BTI-13、BTI-15與BTI-17染料所敏化之DSC元件的光電表現探討 75
3-6、以 BTI-4、BTI-7、BTI-13、BTI-15與BTI-17染料組裝之DSC元件的電化學阻抗(Electrochemical impedance spectroscopy, EIS)分析 78
肆、結論 80
伍、參考文獻 81
附錄 86
附錄1、DSC元件的組裝 86
附錄2、以 BTI-4、BTI-7、BTI-13、BTI-15、BTI-17染料來組裝DSC元件時的電解質優化步驟 87
附錄2-1、電解質中tBP濃度對元件光電轉換效率的影響 87
附錄2-2、電解質中LiI濃度對元件光電轉換效率的影響 88
附錄2-3、電解質中BMII濃度對元件光電轉換效率的影響 90
附錄2-4、電解質中GuSCN濃度對元件光電轉換效率的影響 93
附錄3、BTI系列染料於TiO2的吸附量之量測 95
附錄4、UV-Vis吸收光譜圖與螢光光譜圖之疊圖 96
附錄5、1H-NMR圖譜 97
參考文獻
[1] J. Potočnik, “Renewable Energy Sources and the Realities of Setting an Energy Agenda”, Science 2007, 315, 810-811.
[2] R. F. Service, “Solar Report Sets the Agenda”, Science 2005, 309, 549.
[3] https://www.nrel.gov/pv/assets/images/efficiency-chart.png, August 13th, 2017.
[4] B. O′Regand, M. Grätzel, “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 films”, Nature 1991, 353, 737-740.
[5] M. Grätzel, “Photoelectrochemical Cells”, Nature 2001, 414, 338-344.
[6] R. V. M. Otakwa, J. Simiyu, S. M. Waita, J. M. Mwabora, “Application of Dye-Sensitized Solar Cell Technology in the Tropics: Effects of Air Mass on Device Performance”, International Journal of Renewable Energy Research 2012, 2, 369-375.
[7] http://www.laserfocusworld.com/articles/2009/05/photovoltaics-measuring-the-sun.html, August 16th, 2017.
[8] http://www.otichina.com/renewable-energy/photovoltaic-array-solar-panel.htm, August 16th, 2017.
[9] L. Zhang, J. M. Cole, “Anchoring Groups for Dye-Sensitized Solar Cells”, ACS Appl. Mater. Interfaces 2015, 7, 3427-3455.
[10] M. K.Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, “Conversion of Light to Electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate) Ruthen-ium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes”, J. Am. Chem. Soc. 1993, 115, 6382-6390.
[11] M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells”, J. Am. Chem. Soc. 2001, 123, 1613-1624.
[12] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, Md. K. Nazeeruddin, M. Grätzel, “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers”, Nat. Chem. 2014, 6, 242-247.
[13] Y. Wu, W. Zhu, “Organic sensitizers from D–π–A to D–A–π–A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances”, Chem. Soc. Rev. 2013, 42, 2039-2058.
[14] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawab, M. Hanaya, “Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes”, Chem. Commun. 2015, 51, 15894-15897.
[15] https://www.energie-experten.ch/de/wohnen/wohnen/farbigkeit-in-der-solartechnik.html, August 16th, 2017.
[16] https://en.wikipedia.org/wiki/Visible_spectrum, August 13th, 2017.
[17] J.-H. Yum, T. W. Holcombe, Y. Kim, K. Rakstys, T. Moehl, J. Teuscher; J. H. Delcamp; M. K. Nazeeruddin; M. Grätzel, “Blue-Coloured Highly Efficient Dye-Sensitized Solar Cells by Implementing the Diketopyrrolopyrrole Chromophore”, Sci. Rep. 2013, 3, 2446-2453.
[18] J. Mao, J. Yang, J. Teuscher, T. Moehl, C. Yi, R. Humphry-Baker,P. Comte, C. Grätzel, J. Hua, S. M. Zakeeruddin, H. Tian, M. Grätzel, “Thiadiazolo[3,4-c]pyridine Acceptor Based Blue Sensitizers for High Efficiency Dye-Sensitized Solar Cells”, J. Phys. Chem. C. 2014, 118, 17090-17099.
[19] T. Maugarda, E. Enauda, P. Choisyb, M. D. Legoy, “Identification of an indigo precursor from leaves of Isatis tinctoria (Woad)”, Phytochemistry 2001, 58, 897-904.
[20] J. Mei, K. R. Graham, R. Stalder, J. R. Reynolds, “Synthesis of Isoindigo-Based Oligothiophenes for Molecular Bulk Heterojunction Solar Cells”, Org. Lett. 2010, 12, 660-663.
[21] W. Ying, F. Guo, J. Li, Q. Zhang, W. Wu, H. Tian, J. Hua, “Series of New D A-π A Organic Broadly Absorbing Sensitizers Containing Isoindigo Unit for Highly Efficient Dye-Sensitized Solar Cells”, Appl. Mater. Interfaces 2012, 4, 4215-4224.
[22] S.-G. Li, K.-J. Jiang, J.-H. Huang, L.-M. Yang, Y.-L. Song, “Molecular engineering of panchromatic isoindigo sensitizers for dye-sensitized solar cell applications”, Chem. Commun. 2014, 50, 4309-4311.
[23] M. Karakawa, Y. Aso, “Narrow-optical-gap π-conjugated small molecules based on terminal isoindigo and thienoisoindigo acceptor units for photovoltaic application”, RSC Adv. 2013, 3, 16259-16263.
[24] 陳映維,「尋找染料敏化太陽能電池用之藍色染料」,國立中央大學,碩士論文,2016。
[25] F. Zhang, K.-J. Jiang, J.-H. Huang, C.-C. Yu, S.-G. Li, M.-G. Chen, L.-M. Yanga, Y.-L. Song, “A novel compact DPP dye with enhanced light harvesting and charge transfer properties for highly efficient DSCs”, J. Mater. Chem. A 2013, 1, 4858-4863.
[26] S. Crouch, D. Skoog, F. Holler, “Principles of Instrumental Analysis”, 2006, 6th edition
[27] 魏伸紘,「以電化學法檢測人類乳突病毒序列之研究」,國立交通大學,碩士論文,2004。
[28] http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching-notes/linear-sweep-and-cyclic-voltametry-the-principles, August 13th, 2017.
[29] V. V. Pavlishchuk, A. W. Addison, “Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C” Inorganica Chimica Acta 2000, 298, 97-102.
[30] C. Longo, A. F. Nogueira, M.-A. De Paoli, H. Cachet, “Solid-State and Flexible Dye-Sensitized TiO2 Solar Cells: a Study by Electrochemical Impedance Spectroscopy”, J. Phys. Chem. B. 2002, 106, 5925-5930.
[31] Q. Wang, J. E. Moser, M. Grätzel, “Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells”, J. Phys. Chem. B. 2005, 109, 14945-14953.
[32] 吳慧屏,「奈米管染料敏化太陽能電池的製備與鑑識及其交流阻抗圖譜的研究」,國立交通大學,碩士論文,2010。
[33] 李佳,「具長碳鏈釕金屬錯合物染料搭配鈷錯合物[Co(bpy)3]2+/3+應用於染料敏化太陽能電池」,國立中央大學,碩士論文,2014。
[34] D. Wang, W. Ying, X. Zhang, Y. Hu, W. Wu, J. Hua, “Near-infrared absorbing isoindigo sensitizers: Synthesis and performance for dye-sensitized solar cells”, Dyes and Pigments 2015, 112, 327-334.
[35] A. Tomkeviciene, J. V. Grazulevicius, D. Volyniuk,V. Jankauskasb, G. Sini, “Structure–properties relationship of carbazole and fluorene hybrid trimers: experimental and theoretical approaches”, Phys. Chem. Chem. Phys. 2014, 16, 1393213942.
[36] F. C. Spano1, C. Silva, “H- and J-Aggregate Behavior in Polymeric Semiconductors”, Annu. Rev. Phys. Chem. 2014, 65, 477-500.
[37] H. Dong, M. Liang, C. Zhang, Y. Wu, Z. Sun, S. Xue, “Twisted Fused-Ring Thiophene Organic Dye-Sensitized Solar Cells”, J. Phys. Chem. C 2016, 120, 22822-22830.
[38] S. Feldt, “Alternative Redox Couples for Dye-Sensitized Solar Cells”, Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1017 2013, ISBN 978-91-554-8595-5.
[39] R. Stalder, D. Xie, A. Islam, L. Han, J. R. Reynolds, K. S. Schanze, ”Panchromatic Donor−Acceptor−Donor Conjugated Oligomers for Dye-Sensitized Solar Cell Applications”, ACS Appl. Mater. Interfaces 2014, 6, 8715-8722.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2017-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明