參考文獻 |
[1] X. Zheng, X. Yan, Y. Sun, Z. Bai, G. Zhang, Y. Shen, et al., ”Au-Embedded ZnO/NiO Hybrid with Excellent Electrochemical Performance as Advanced Electrode Materials for Supercapacitor,” ACS Appl. Mater. Interfaces, vol. 7, 2015.
[2] Q. Li, Z. L. Wang, G. R. Li, R. Guo, L. X. Ding, and Y. X. Tong, ”Design and Synthesis of MnO2/Mn/MnO2 Sandwich-Structured Nanotube Arrays with High Supercapacitive Performance for Electrochemical Energy Storage,” Nano Lett., vol. 12, 2012.
[3] Z. L. Wang, X. J. He, S. H. Ye, Y. X. Tong, and G. R. Li, ”Design of Polypyrrole/Polyaniline Double-Walled Nanotube Arrays for Electrochemical Energy Storage,” ACS Appl. Mater. Interfaces, vol. 6, 2014.
[4] X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X.-b. Zhao, et al., ”High-Quality Metal Oxide Core Shell Nanowire Arrays on Conductive Substrates for Electrochemical Energy Storage,” ACS Nano, vol. 6, 2012.
[5] P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, et al., ”Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems,” ACS Nano, vol. 7, 2013.
[6] S. Gao, S. Jiao, B. Lei, H. Li, J. Wang, Q. Yu, et al., ”Efficient Photocatalyst Based on ZnO Nanorod Arrays/p-type Boron-Doped-Diamond Heterojunction,” J. Mater. Sci.: Mater. Electron., vol. 26, 2014.
[7] J. Park, D. S. Shin, and D.-H. Kim, ”Enhancement of Light Extraction in GaN-Based Light-Emitting Diodes by Al2O3-Coated ZnO Nanorod Arrays,” J. Alloy. Compd., vol. 611, 2014.
[8] K.-Y. Peng, Y.-H. Ho, D.-H. Wei, Y.-C. Yu, Y.-D. Yao, W.-C. Tian, et al., ”Efficiency Enhancement of Organic Light-Emitting Devices by Using Honeycomb Metallic Electrodes and Two-Dimensional Photonic Crystal Arrays,” Org. Electron., vol. 15, 2014.
[9] K.-Y. Peng and D.-H. Wei, ”Improving Light Extraction of Organic Light-Emitting Devices by Attaching Nanostructures with Self-Assembled Photonic Crystal Patterns,” Int. J. Photoenergy., vol. 2014, 2014.
[10] L. Zhang, X. Liu, Z. Lian, X. Wang, G. Shen, D. Shen, et al., ”Highly Efficient Field Emission from Large-Scale and Uniform Monolayer Graphene Sheet Supported on Patterned ZnO Nanorod Arrays,” J. Mater. Chem. C, vol. 2, 2014.
[11] Y. Saito and S. Uemura, ”Field Emission from Carbon Nanotubes and Its Application to Electron Sources,” Carbon, vol. 38, 2000.
[12] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, ”Field Emission from Well-Aligned Zinc Oxide Nanowires Grown at Low Temperature,” Appl. Phys. Lett., vol. 81, 2002.
[13] D. Tamvakos, S. Lepadatu, V.-A. Antohe, A. Tamvakos, P. M. Weaver, L. Piraux, et al., ”Piezoelectric Properties of Template-Free Electrochemically Grown ZnO Nanorod Arrays,” Appl. Surf. Sci., vol. 356, 2015.
[14] Z. L. Wang and J. Song, ”Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,” Science, vol. 312, 2006.
[15] Z. L. Wang, ”Nanopiezotronics,” Adv. Mater., vol. 19, 2007.
[16] J. Tornow, K. Ellmer, J. Szarko, and K. Schwarzburg, ”Voltage Bias Dependency of the Space Charge Capacitance of Wet Chemically Grown ZnO Nanorods Employed in a Dye Sensitized Photovoltaic Cell,” Thin Solid Films, vol. 516, 2008.
[17] K. V. Gurav, M. G. Gang, S. W. Shin, U. M. Patil, P. R. Deshmukh, G. L. Agawane, et al., ”Gas Sensing Properties of Hydrothermally Grown ZnO Nanorods with Different Aspect Ratios,” Sensor Actuat. B-Chem., vol. 190, 2014.
[18] Z. Wen, L. Zhu, Z. Zhang, and Z. Ye, ”Fabrication of Gas Sensor Based on Mesoporous Rhombus-Shaped ZnO Rod Arrays,” Sensor. Actuat. B-Chem., vol. 208, 2015.
[19] L. Wei, Q. X. Liu, B. Zhu, W. J. Liu, S. J. Ding, H. L. Lu, et al., ”Low-Cost and High-Productivity Three-Dimensional Nanocapacitors Based on Stand-Up ZnO Nanowires for Energy Storage,” Nanoscale. Res. Lett., vol. 11, Dec 2016.
[20] C. L. Pint, N. W. Nicholas, S. Xu, Z. Sun, J. M. Tour, H. K. Schmidt, et al., ”Three Dimensional Solid-State Supercapacitors from Aligned Single-Walled Carbon Nanotube Array Templates,” Carbon, vol. 49, 2011.
[21] L.-J. Li, B. Zhu, S.-J. Ding, H.-L. Lu, Q.-Q. Sun, A. Jiang, et al., ”Three-Dimensional AlZnO/Al2O3/AlZnO Nanocapacitor Arrays on Si Substrate for Energy Storage,” Nanoscale Res. Lett., vol. 7, 2012.
[22] M. Y. Ayad, M. Becherif, and A. Henni, ”Vehicle Hybridization with Fuel Cell, Supercapacitors and Batteries by Sliding Mode Control,” Renew. Energ., vol. 36, 2011.
[23] P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, and G. W. Rubloff, ”Nanotubular Metal-Insulator-Metal Capacitor Arrays for Energy Storage,” Nat. Nanotechnol., vol. 4, 2009.
[24] S.-Y. Lee, H. Kim, P. C. McIntyre, K. C. Saraswat, and J.-S. Byun, ”Atomic Layer Deposition of ZrO2 on W for Metal–Insulator–Metal Capacitor Application,” Appl. Phys. Lett., vol. 82, 2003.
[25] H.-Y. Kwak, S.-K. Kwon, H.-M. Kwon, S.-Y. Sung, S. Lim, C.-Y. Kim, et al., ”Characterization of Dielectric Relaxation and Reliability of High-k MIM Capacitor Under Constant Voltage Stress,” J. Semicond. Tech. Sci., vol. 14, 2014.
[26] H. Hu, C. Zhu, Y. F. Lu, M. F. Li, B. J. Cho, and W. K. Choi, ”A High Performance MIM Capacitor Using HfO2 Dielectrics,” IEEE Electr. Device. L., vol. 23, 2002.
[27] S.-J. Ding, H. Hu, L. H. F., K. S. J., Y. X. F., C. Zhu, et al., ”High-Performance MIM Capacitor Using ALD High-k HfO2-Al2O3 Laminate Dielectrics,” IEEE Electr. Device. L., vol. 24, 2003.
[28] E. Hourdakis, A. Travlos, and A. G. Nassiopoulou, ”High-Performance MIM Capacitors With Nanomodulated Electrode Surface,” IEEE T. Electron. Dev., vol. 62, 2015.
[29] J. H. Klootwijk, K. B. Jinesh, W. Dekkers, J. F. Verhoeven, F. C. van den Heuvel, H. D. Kim, et al., ”Ultrahigh Capacitance Density for Multiple ALD-Grown MIM Capacitor Stacks in 3-D Silicon,” IEEE Electr Device. L., vol. 29, 2008.
[30] L. C. Haspert, S. B. Lee, and G. W. Rubloff, ”Nanoengineering Strategies for Metal–Insulator–Metal Electrostatic Nanocapacitors,” ACS Nano, vol. 6, 2012.
[31] F. Han, G. Meng, F. Zhou, L. Song, X. Li, X. Hu, et al., ”Dielectric Capacitors with Three-Dimensional Nanoscale Interdigital Electrodes for Energy Storage,” Sci. Adv., vol. 1, 2015.
[32] M. Kemell, M. Ritala, M. Leskelä, E. Ossei-Wusu, J. Carstensen, and H. Föll, ”Si/ Al2O3/ ZnO:Al Capacitor Arrays Formed in Electrochemically Etched Porous Si by Atomic Layer Deposition,” Microelectron. Eng., vol. 84, 2007.
[33] H. C. Han, C. W. Chong, S. B. Wang, D. Heh, C. A. Tseng, Y. F. Huang, et al., ”High k Nanophase Zinc Oxide on Biomimetic Silicon Nanotip Array as Supercapacitors,” Nano Lett., vol. 13, 2013.
[34] J. J. Dong, X. W. Zhang, Z. G. Yin, S. G. Zhang, J. X. Wang, H. R. Tan, et al., ”Controllable Growth of Highly Ordered ZnO Nanorod Arrays via Inverted Self-Assembled Monolayer Template,” ACS Appl. Mater. Interfaces, vol. 3, 2011.
[35] Y. Zhao, P. Jiang, and S.-S. Xie, ”ZnO-Template-Mediated Synthesis of Three-Dimensional Coral-Like MnO2 Nanostructure for Supercapacitors,” J. Power Sources, vol. 239, 2013.
[36] J. Li, Q. Zhang, H. Peng, H. O. Everitt, L. Qin, and J. Liu, ”Diameter-Controlled Vapor-Solid Epitaxial Growth and Properties of Aligned ZnO Nanowire Arrays,” J. Phys. Chem. C vol. 113, 2009.
[37] I. Pastore, R. Poplausks, I. Apsite, I. Pastare, F. Lombardi, and D. Erts, ”Fabrication of Ultra Thin Anodic Aluminium Oxide Membranes by Low Anodization Voltages,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 23, 2011.
[38] B. Sunandan and D. Joydeep, ”Hydrothermal Growth of ZnO Nanostructures,” Sci. Technol. Adv. Mat., vol. 10, 2016.
[39] N. Tohge, S. Takahashi, and T. Minam, ”Preparation of PbZrO3–PbTiO3 Ferroelectric Thin Films by the Sol–Gel Process,” J. Am. Ceram. Soc., vol. 74, 1991.
[40] Y. Bai, Z. Y. Cheng, V. Bharti, H. S. Xu, and Q. M. Zhang, ”High-Dielectric-Constant Ceramic-Powder Polymer Composites,” Appl. Phys. Lett., vol. 76, 2000.
[41] Z.-M. Dang, Y.-H. Lin, and C.-W. Nan, ”Novel Ferroelectric Polymer Composites with High Dielectric Constants,” Adv. Mater., vol. 15, 2003.
[42] M. D. Groner, J. W. Elam, F. H. Fabreguette, and S. M. George, ”Electrical Characterization of Thin Al2O3 Films Grown by Atomic Layer Deposition on Silicon and Various Metal Substrates,” Thin Solid Films, vol. 413, 2002.
[43] H. C. Lin, P. D. Ye, and G. D. Wilk, ”Leakage Current and Breakdown Electric-Field Studies on Ultrathin Atomic-Layer-Deposited Al2O3 on GaAs,” Appl. Phys. Lett., vol. 87, 2005.
[44] S. H. Lin, K. C. Chiang, A. Chin, and F. S. Yeh, ”High-Density and Low-Leakage-Current MIM Capacitor Using Stacked TiO2 ZrO2 insulators,” IEEE Electr. Device. L., vol. 30, 2009.
[45] C. H. Cheng, S. H. Lin, K. Y. Jhou, W. J. Chen, C. P. Chou, F. S. Yeh, et al., ”High Density and Low Leakage Current in TiO2 MIM Capacitors Processed at 300 oC,” IEEE Electr. Device. L, vol. 29, 2008.
[46] S.-J. Ding, D. W. Zhang, and L.-K. Wang, ”Atomic-Layer-Deposited Al2O3-HfO2 Laminated and Sandwiched Dielectrics for Metal–Insulator–Metal Capacitors,” J. Phys. D: Appl. Phys., vol. 40, 2007.
[47] X. Yu, C. Zhu, H. Hu, C. A., L. M. F., B. J. Cho, et al., ”A High-Density MIM Capacitor (13 fF/μm2) Using ALD HfO2 Dielectrics,” IEEE Electr. Device. L., vol. 24, 2003.
[48] D. Panda and T.-Y. Tseng, ”Growth, Dielectric Properties, and Memory Device Applications of ZrO2 Thin Films,” Thin Solid Films, vol. 531, 2013.
[49] S. K. Kim and C. S. Hwang, ”Atomic Layer Deposition of ZrO2 Thin Films with High Dielectric Constant on TiN Substrates,” Electrochem. Solid St., vol. 11, 2008.
[50] B. C.-m. Lai and J. Y.-m. Lee, ”Leakage Current Mechanism of Metal ‐ Ta2O5 ‐ Metal Capacitors for Memory Device Applications,” J. Electrochem. Soc., vol. 146, 1999.
[51] J.-J. Yang, J.-D. Chen, R. Wise, P. Steinmann, M.-B. Yu, D.-L. Kwong, et al., ”Effective Modulation of Quadratic Voltage Coefficient of Capacitance in MIM Sm2O3 SiO2 Capacitors Using Dielectric Stack,” IEEE Electr Device. L., vol. 30, 2009.
[52] H. Yang, H. Wang, H. M. Luo, D. M. Feldmann, P. C. Dowden, R. F. DePaula, et al., ”Structural and Dielectric Properties of Epitaxial Sm2O3 Thin Films,” Appl. Phys. Lett., vol. 92, 2008.
[53] D. Martin, M. Grube, W. Weinreich, J. Müller, W. M. Weber, U. Schröder, et al., ”Mesoscopic Analysis of Leakage Current Suppression in ZrO2/Al2O3/ZrO2 Nano-Laminates,” J. Appl. Phys., vol. 113, 2013.
[54] D. Z. Austin, D. Allman, D. Price, S. Hose, and J. F. Conley, ”Plasma Enhanced Atomic Layer Deposition of Al2O3/SiO2 MIM Capacitors,” IEEE Electr. Device. L., vol. 36, 2015.
[55] T.-M. Pan, C.-I. Hsieh, T.-Y. Huang, J.-R. Yang, and P.-S. Kuo, ”Good High-Temperature Stability of TiN/Al2O3/WN/TiN Capacitors,” IEEE Electr. Device. L., vol. 28, 2007.
[56] C. L. Yuan and P. S. Lee, ”Enhanced Charge Storage Capability of Ge/GeO2 Core/Shell Nanostructure,” Nanotechnology, vol. 19, 2008.
[57] S. Maikap, W. Banerjee, T. C. Tien, T. Y. Wang, and J. R. Yang, ”Temperature-Dependent Physical and Memory Characteristics of Atomic-Layer-Deposited RuOx Metal Nanocrystal Capacitors,” J. Nanomater., vol. 2011, 2011.
[58] R. S. Bisht, R. R. Ghimire, and A. K. Raychaudhuri, ”Control of Grain Boundary Depletion Layer and Capacitance in ZnO Thin Film by a Gate with Electric Double Layer Dielectric,” J. Phys. Chem. C, vol. 119, 2015.
[59] J. B. Baxter, A. M. Walker, K. v. Ommering, and E. S. Aydil, ”Synthesis and Characterization of ZnO Nanowires and Their Integration into Dye-Sensitized Solar Cells,” Nanotechnology, vol. 17, 2006.
[60] N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, and K. Koumoto, ”Low-Temperature Fabrication of Light-Emitting Zinc Oxide Micropatterns Using Self-Assembled Monolayers,” Adv. Mater., vol. 14, 2002.
[61] K. Y. Ko, H. Kang, J. Park, B.-W. Min, H. S. Lee, S. Im, et al., ”ZnO Homojunction Core–Shell Nanorods Ultraviolet Photo-Detecting Diodes Prepared by Atomic Layer Deposition,” Sensor. Actuat A: Phys., vol. 210, 2014.
[62] D. Pullini, A. Pruna, S. Zanin, and D. B. Mataix, ”High Efficiency Electrodeposition of Large Scale ZnO Nanorod Arrays for Thin Transparent Electrodes,” J. Electrochem. Soc., vol. 159, 2012.
[63] A. Prun˘a, D. Pullini, and D. B. Mataix, ”Influence of Deposition Potential on Structure of ZnO Nanowires Synthesized in TrackEtched Membranes,” J Electrochem. Soc., vol. 159, 2012.
[64] O. Singh, N. Kohli, and R. C. Singh, ”Precursor Controlled Morphology of Zinc Oxide and Its Sensing Behaviour,” Sensor Actuat. B-Chem., vol. 178, 2013.
[65] V. F. Rivera, F. Auras, P. Motto, S. Stassi, G. Canavese, E. Celasco, et al., ”Length-Dependent Charge Generation from Vertical Arrays of High-Aspect-Ratio ZnO Nanowires,” Chem. Eur. J., vol. 19, 2013.
[66] H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, ”Low Temperature Synthesis of Flowerlike ZnO Nanostructures by Cetyltrimethylammonium Bromide-Assisted Hydrothermal Process,” J. Phys. Chem. B, vol. 108, 2004.
[67] A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, ”Zinc Oxide Nanowires in Chemical Bath on Seeded Substrates: Role of Hexamine,” J. Sol-Gel. Sci. Techn., vol. 39, 2006.
[68] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, et al., ”Room-Temperature Ultraviolet Nanowire Nanolasers,” Science, vol. 292, 2001.
[69] L. Miao, Y. Ieda, S. Tanemura, Y. G. Cao, M. Tanemura, Y. Hayashi, et al., ”Synthesis, Microstructure and Photoluminescence of Well-Aligned ZnO Nanorods on Si Substrate,” Sci. Technol. Adv. Mat., vol. 8, 2016.
[70] H.-G. Chen and Z.-W. Li, ”Seed-Assisted Growth of Epitaxial ZnO Nanorod Arrays with Self-Organized Periodicity and Directional Alignment,” Appl. Surf. Sci., vol. 258, 2011.
[71] G. Min, D. Peng, and C. Shengmin, ”Hydrothermal Growth of Well-Aligned ZnO Nanorod Arrays: Dependence of Morphology and Alignment Ordering upon Preparing Conditions,” J. Solid. State. Chem., vol. 178, 2005.
[72] J. M. Downing, M. P. Ryan, and M. A. McLachlan, ”Hydrothermal Growth of ZnO Nanorods: The Role of KCl in Controlling Rod Morphology,” Thin Solid Films, vol. 539, 2013.
[73] S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, et al., ”Patterned Growth of Vertically Aligned ZnO Nanowire Arrays on Inorganic Substrates at Low Temperature without Catelyst,” J. Am. Chem. Soc., vol. 130, 2008.
[74] D. S. Kim, R. Ji, H. J. Fan, F. Bertram, R. Scholz, A. Dadgar, et al., ”Laser-Interference Lithography Tailored for Highly Symmetrically Arranged ZnO Nanowire Arrays,” Small, vol. 3, 2007.
[75] A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, and M. Giersig, ”Shadow Nanosphere Lithography: Simulation and Experiment,” Nano. Lett., vol. 4, 2004.
[76] X. Wang, C. J. Summers, and Z. L. Wang, ”Large Scale Hexagonal-Patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosenseor arrays,” Nano Lett., vol. 4, 2004.
[77] D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, et al., ”Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere,” Nano. Lett., vol. 6, 2006.
[78] J. Zhang, Y. Li, X. Zhang, and B. Yang, ”Colloidal Self-Assembly Meets Nanofabrication: From Two-Dimensional Colloidal Crystals to Nanostructure Arrays,” Adv. Mater., vol. 22, 2010.
[79] M. Kondo, K. Shinozaki, L. Bergstroem, and N. Mizutani, ”Preparation of Colloidal Monolayers of Alkoxylated Silica Particles at the Air-Liquid Interface,” Langmuir, vol. 11, 1995.
[80] C. Lopez, ”Materials Aspects of Photonic Crystals,” Adv. Mater., vol. 15, 2003.
[81] J. J. Dong, X. W. Zhang, S. G. Zhang, H. R. Tan, Z. G. Yin, Y. Gao, et al., ”Polystyrene-Microsphere-Assisted Patterning of ZnO Nanostructures: Growth and Characterization,” J. Nanosci. Nanotechno., vol. 13, 2013.
[82] K. Byrappa and T. Adschiri, ”Hydrothermal Technology for Nanotechnology,” Prog. Cryst. Growth. Ch, vol. 53, 2007.
[83] G. Amin, M. H. Asif, A. Zainelabdin, S. Zaman, O. Nur, and M. Willander, ”Influence of pH, Precursor Concentration, Growth Time, and Temperature on the Morphology of ZnO Nanostructures Grown by the Hydrothermal Method,” J. Nanomater., vol. 2011, 2011.
[84] Z. Li, X. Huang, J. Liu, Y. Li, and G. Li, ”Morphology Control and Transition of ZnO Nanorod Arrays by a Simple Hydrothermal Method,” Mater. Lett., vol. 62, 2008.
[85] L. L. Yang, Q. X. Zhao, and M. Willander, ”Size-Controlled Growth of Well-Aligned ZnO Nanorod Arrays with Two-Step Chemical Bath Deposition Method,” J. Alloy. Compd., vol. 469, 2009.
[86] S. Xu, C. Lao, B. Weintraub, and Z. L. Wang, ”Density-Controlled Growth of Aligned ZnO Nanowire Arrays by Seedless Chemical Approach on Smooth Surfaces,” J. Mater. Res., vol. 23, 2011.
[87] C. Li, G. Hong, P. Wang, D. Yu, and L. Qi, ”Wet Chemical Approaches to Patterned Arrays of Well-Aligned ZnO Nanopillars Assisted by Monolayer Colloidal Crystals,” Chem. Mater., vol. 21, 2009.
[88] Y. He, T. Yanagida, K. Nagashima, F. Zhuge, G. Meng, B. Xu, et al., ”Crystal-Plane Dependence of Critical Concentration for Nucleation on Hydrothermal ZnO Nanowires,” J. Phys. Chem. C, vol. 117, 2013.
[89] M. N. R. Ashfold, R. P. Doherty, N. G. Ndifor-Angwafor, D. J. Riley, and Y. Sun, ”The Kinetics of the Hydrothermal Growth of ZnO Nanostructures,” Thin Solid Films, vol. 515, 2007.
[90] J. B. Baxter and E. S. Aydil, ”Epitaxial Growth of ZnO Nanowires on a- and c-plane Sapphire,” J. Cryst. Growth, vol. 274, 2005.
[91] Y. Chen, D. M. Bagnall, H.-j. Koh, K.-t. Park, K. Hiraga, Z. Zhu, et al., ”Plasma Assisted Molecular Beam Epitaxy of ZnO on c-plane Sapphire: Growth and Characterization,” J. Appl. Phys., vol. 84, 1998.
[92] R. Molaei, M. R. Bayati, H. M. Alipour, N. A. Estrich, and J. Narayan, ”Nanosecond Laser Switching of Surface Wettability and Epitaxial Integration of c-axis ZnO Thin Films with Si(111) Substrates,” J. Phys. Condens. Matter., vol. 26, 2014.
[93] H.-M. Cheng, H.-C. Hsu, S. Yang, C.-Y. Wu, Y.-C. Lee, L.-J. Lin, et al., ”The Substrate Effect on the In-plane Orientation of Vertically Well-Aligned ZnO Nanorods Grown on ZnO Buffer Layers,” Nanotechnology, vol. 16, 2005.
[94] H.-G. Chen, Z.-W. Li, and H.-D. Lian, ”Control of Epitaxial Growth Orientation in ZnO Nanorods on c-plane Sapphire Substrates,” Thin Solid Films, vol. 518, 2010.
[95] J. Narayan and B. C. Larson, ”Domain Epitaxy: A Unified Paradigm for Thin Film Growth,” J. Appl. Phys., vol. 93, 2003.
[96] T. Nakamura, Y. Yamada, T. Kusumori, H. Minouraa, and H. Muto, ”Improvement in the Crystallinity of ZnO Thin Films by Introduction of a Buffer Layer,” Thin Solid Films vol. 411, 2002.
[97] O. Lupan, T. Pauporté, B. Viana, I. M. Tiginyanu, V. V. Ursaki, and R. Cortès, ”Epitaxial Electrodeposition of ZnO Nanowire Arrays on p-GaN for Efficient UV-Light-Emitting Diode Fabrication,” ACS Appl. Mater. Inter., vol. 2, 2010.
[98] Y. Chen, S.-k. Hong, H.-j. Ko, V. Kirshner, H. Wenisch, T. Yao, et al., ”Effects of An Extremely Thin Buffer on Heteroepitaxy with Large Lattice Mismatch,” Appl. Phys. Lett. , vol. 78, 2001.
[99] K.-H. Bang, D.-K. Hwang, and J.-M. Myoung, ”Effects of ZnO Buffer Layer Thickness on Properties of ZnO Thin Films Deposited by Radio-Frequency Magnetron Sputtering,” Appl. Surf. Sci., vol. 207, 2003.
[100] W. Wu, G. Hu, S. Cui, Y. Zhou, and H. Wu, ”Epitaxy of Vertical ZnO Nanorod Arrays on Highly (001)-Oriented ZnO Seed Monolayer by a Hydrothermal Route,” Cryst. Growth. Des., vol. 8, 2008.
[101] T. F. Chung, J. A. Zapien, and S.-T. Lee, ”Luminescent Properties of ZnO Nanorod Arrays Grown on Al:ZnO Buffer Layer,” J. Phys. Chem. C, vol. 112, 2008.
[102] T. Suntola and J. Hyvarinen, ”Atomic Layer Epitaxy,” Annu. Rev. Mater. Sci., vol. 15, 1986.
[103] S. M. George, ”Atomic Layer Deposition An Overview,” Chem. Rev., vol. 110, 2010.
[104] J. R. Bakke, K. L. Pickrahn, T. P. Brennan, and S. F. Bent, ”Nanoengineering and Interfacial Engineering of Photovoltaics by Atomic Layer Deposition,” Nanoscale, vol. 3, 2011.
[105] T. Tynell, H. Yamauchi, M. Karppinen, R. Okazaki, and I. Terasaki, ”Atomic Layer Deposition of Al-doped ZnO Thin Films,” J. Vac. Sci. Technol. A, vol. 31, 2013.
[106] C.-S. Ku, J.-M. Huang, C.-M. Lin, and H.-Y. Lee, ”Fabrication of Epitaxial ZnO Films by Atomic-Layer Deposition with Interrupted Flow,” Thin Solid Films, vol. 518, 2009.
[107] J.-M. Huang, C.-S. Ku, H.-Y. Lee, C.-M. Lin, and S.-Y. Chen, ”Growth of High-Quality Epitaxial ZnO Films on (10–10) Sapphire by Atomic Layer Deposition with Flow-Rate Interruption Method,” Surf. Coat. Tech., vol. 231, 2013.
[108] G. Zhang, H. Wu, C. Chen, T. Wang, J. Yue, and C. Liu, ”Transparent and Flexible Capacitors Based on Nanolaminate Al2O3/TiO2/Al2O3,” Nanoscale Res. Lett., vol. 10, 2015.
[109] R. Wahab, S. G. Ansari, Y. S. Kim, M. Song, and H.-S. Shin, ”The Role of pH Variation on the Growth of Zinc Oxide Nanostructures,” Appl. Surf. Sci., vol. 255, 2009.
[110] O. Singh, M. P. Singh, N. Kohli, and R. C. Singh, ”Effect of pH on the Morphology and Gas Sensing Properties of ZnO Nanostructures,” Sensor Actuat. B-Chem., vol. 166-167, 2012.
[111] L. W. Chou and A. T. Wu, ”Application of Nanostructural Transparent Conductive Oxides,” Ph.D., Chemical and Material Engineering, National Central University 2015.
[112] P. Fons, K. Iwata, S. Niki, A. Yamada, and K. Matsubara, ”Growth of High-Quality Epitaxial ZnO Films on a-Al2O3,” J. Cryst. Growth, vol. 201/202, 1999.
[113] B.-C. Lin, C.-S. Ku, H.-Y. Lee, and A. T. Wu, ”Epitaxial Growth of ZnO Nanorod Arrays via a Self-Assembled Microspheres Lithography,” Appl. Surf. Sci., vol. 414, 2017.
[114] K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisic, C. C. Ling, C. D. Beling, et al., ”Defects in ZnO Nanorods Prepared by a Hydrothermal Method,” J. Phys. Chem. B, vol. 110, 2006.
[115] C. Xu, G. Xu, Y. Liu, and G. Wang, ”A Simple and Novel Route for the Preparation of ZnO Nanorods,” Solid State Commun., vol. 122, 2002.
[116] R. Ludeke, M. T. Cuberes, and E. Cartier, ”Local Transport and Trapping Issues in Al2O3 Gate Oxide Structures,” Appl. Phys. Lett., vol. 76, 2000.
[117] N. Batra, J. Gope, Vandana, J. Panigrahi, R. Singh, and P. K. Singh, ”Influence of deposition temperature of thermal ALD deposited Al2O3 films on silicon surface passivation,” AIP Advances, vol. 5, p. 067113, 2015.
[118] G. Seguini, E. Cianci, C. Wiemer, D. Saynova, J. A. M. van Roosmalen, and M. Perego, ”Si surface Passivation by Al2O3 Thin Films Deposited Using a Low Thermal Budget Atomic Layer Deposition Process,” Appl. Phys. Lett., vol. 102, 2013.
[119] D.-R. Hang, S. E. Islam, K. H. Sharma, S.-W. Kuo, C.-Z. Zhang, and J.-J. Wang, ”Annealing Effects on the Optical and Morphological Properties of ZnO Nanorods on AZO Substrate by Using Aqueous Solution Method at Low Temperature,” Nanoscale Res. Lett., vol. 9, 2014.
[120] S. M. Hatch, J. Briscoe, A. Sapelkin, W. P. Gillin, J. B. Gilchrist, M. P. Ryan, et al., ”Influence of Anneal Atmosphere on ZnO-Nanorod Photoluminescent and Morphological Properties with Self-Powered Photodetector Performance,” J. Appl. Phys., vol. 113, 2013.
[121] Y. Yang, D. S. Kim, M. Knez, R. Scholz, A. Berger, E. Pippel, et al., ”Influence of Temperature on Evolution of Coaxial ZnO/ Al2O3 One-Dimensional Heterostructures From Core-Shell Nanowires to Spinel Nanotubes and Porous Nanowires,” J. Phys. Chem. C, vol. 112, 2008.
[122] H. J. Fan, M. Knez, R. Scholz, Dietrich Hesse, K. Nielsch, M. Zacharias, et al., ”Influence of Surface Diffusion on the Formation of Hollow Nanostructures Induced by the Kirkendall Effect The Basic Concept,” Nano Lett., vol. 7, 2007.
[123] M. Grunze, W. Hirschwald, and D. Hofmann, ”Zinc Oxide Surface Structure, Stability, and Mechanisms of Surface Reactions,” J. Cryst. Growth, vol. 52, 1981.
[124] I. W. Kim, S. J. Doh, C. C. Kim, J. H. Je, J. Tashiro, and M. Yoshimoto, ”Effect of Evaporation on Surface Morphology of Epitaxial ZnO Films during Postdeposition Annealing,” Appl. Surf. Sci., vol. 241, 2005.
[125] K.-N. Tu, J. W. Mayer, and L. C. Feldman, Electronic Thin Film Science For Electrical Engineers and Materials Scientisits, 1992.
[126] L. Scheffler, V. Kolkovsky, E. V. Lavrov, and J. Weber, ”Deep Level Transient Spectroscopy Studies of n-type ZnO Single Crystals Grown by Different Techniques,” J. Phys. Condens. Matter., vol. 23, 2011.
[127] A. Elhami Khorasani, D. K. Schroder, and T. L. Alford, ”A Fast Technique to Screen Carrier Generation Lifetime Using DLTS on MOS Capacitors,” IEEE T. Electron. Dev., vol. 61, 2014.
[128] V. Quemener, ”Electrical Characterization of Bulk and Thin Film Zinc Oxide,” Ph.D., Department of Physics Faculty of Mathematics Natural Sciences University of Oslo, 2012.
[129] R. S. Wang, Q. L. Gu, C. C. Ling, and H. C. Ong, ”Studies of Oxide/ZnO Near-Interfacial Defects by Photoluminescence and Deep Level Transient Spectroscopy,” Appl. Phys. Lett., vol. 92, 2008.
[130] Y. Zhu, C. H. Sow, T. Yu, Q. Zhao, P. Li, Z. Shen, et al., ”Co-synthesis of ZnO–CuO Nanostructures by Directly Heating Brass in Air,” Adv. Funct. Mater., vol. 16, 2006.
[131] A. M. Gsiea, J. P. Goss, P. R. Briddon, R. M. Al-habashi, K. M. Etmimi, K. A. S., et al., ”Native Point Defects in ZnO,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 8, 2014.
[132] D. Das and P. Mondal, ”Photoluminescence Phenomena Prevailing in c-axis Oriented Intrinsic ZnO Thin Films Prepared by RF Magnetron Sputtering,” RSC. Adv., vol. 4, 2014.
[133] A. A. Sokol, S. A. French, S. T. Bromley, C. R. A. Catlow, H. J. J. van Dam, and P. Sherwood, ”Point Defects in ZnO,” Faraday Discuss., vol. 134, 2007.
[134] B. Lin, Z. Fu, Y. Jia, and G. Liao, ”Defect Photoluminescence of Undoping ZnO Films and Its Dependence on Annealing Conditions,” J. Electrochem. Soc., vol. 148, 2001. |