博碩士論文 101324057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:3.143.214.226
姓名 林伯誠(Bo-Cheng Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 原子層沉積成長氧化物薄膜應用於氧化鋅奈米柱陣列電容器
(ZnO Nanorod Arrays Coated with Oxide Thin Film by Atomic Layer Deposition for Nanocapacitor Application)
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以氧化鋅奈米柱為主軸,分別探討以水熱法合成規則排列、準直的氧化鋅奈米柱陣列的最佳參數,以及將此具有高深寬比的氧化鋅奈米柱陣列,利用原子層沉積技術(ALD)在其上鍍製高品質的氧化鋅摻鋁(AZO)及介電層氧化鋁(Al2O3)薄膜,並探討其在電容性質的強化應用。第一部份是利用水熱法的方式在預鍍AZO晶種層的[0001]藍寶石基板上,藉由聚苯乙烯微球(PS microspheres)能自組裝成最密堆積排列的特性,作為遮罩以控制氧化鋅奈米柱的成長位置。此方法能快速並以簡單的方式製作大面積、高規則排列及具有[0001]優選方向的奈米柱陣列,且由-scan結果顯示氧化鋅奈米柱為六軸對稱且和AZO晶種層及藍寶石基板有磊晶關係。由於在水熱法合成氧化鋅奈米柱過程,氧化鋅的形貌對於成長環境的前驅物濃度、pH值及反應時間有高敏感度的影響,故本實驗探討藉由調整水熱法的三個變因:濃度、pH值及反應時間來尋找在PS球間成長單一根奈米柱的最佳條件,其中影響形貌的因素和氧化鋅對於基板的磊晶行為也在文中討論。
第二部份則是將最佳條件的氧化鋅奈米柱陣列作為模具,利用原子層沉積技術具有大面積、高階梯覆蓋率、高厚度均勻性、低溫製程及原子級膜厚控制等優點,將三層堆疊薄膜結構(AZO/Al2O3/AZO)及五層堆疊薄膜結構(AZO/ZnO/Al2O3/ZnO/AZO)分別鍍製在氧化鋅奈米柱陣列上做成金屬-介電層-金屬結構(MIM)奈米電容,其中低溫鍍製的非晶氧化鋁介電層因為使用ALD方式而具有高介電特性。電容對電壓量測結果顯示等效電容增益和氧化鋅奈米柱所提供顯著表面積成正比,對應薄膜電容器多出2.3倍的容值。而在加入兩層氧化鋅薄膜的五層電容結構中,則因為氧化鋅薄膜中的缺陷在充電狀況下能作為載子捕捉的陷阱,相對於三層電容結構進而提高了7.5倍的等效電容增益。此結果表示,利用高深寬比的氧化鋅奈米柱陣列作為模具加上氧化鋅薄膜的缺陷效應,可以有效提升電容密度,並能應用於需要高表面積的元件。
摘要(英)
Through a simple hydrothermal method, well-aligned and periodic honeycomb-like ZnO nanorod arrays were fabricated on a c-plane sapphire with an aluminum-doped ZnO (AZO) seed layer. The optimal growth conditions allowed the growth of a single rod in the confined space between the microspheres. A -scan analysis showed that the rod exhibited six-fold symmetry, which indicates a favorable epitaxial relationship between the ZnO nanorods, seed layer, and c-plane sapphire substrate. The epitaxial relation is as follows: [0001]ZnO∥[0001]AZO∥[0001]c-plane sapphire. The size of the resulting ZnO nanorods of diameter 20–90 nm could be tuned by varying the concentration of the solution, pH, and duration of the reaction. The large aspect ratio for the ZnO nanorod arrays can serve as a template for high surface-area nanocapacitor applications.
A flow-rate interruption (FRI) atomic-layer deposition (ALD) technique was adopted to fabricate a 3-layers (AZO/Al2O3/AZO) and a 5-layers (AZO/ZnO/Al2O3/ZnO/AZO) thin-film multiple metal-insulator-metal (MIM) on a ZnO arrayed template at low temperature. The high-quality amorphous dielectric Al2O3 layer was deposited at 50°C. The capacitance density of the arrayed template nanocapacitor increased more than 100% than those of the thin-film capacitor at an applied frequency of 10 kHz. Moreover, the ZnO layers with different growing temperature were inserted into the 5-layers MIM capacitors to enhance the charge trapping capability with an increasing equivalent capacitance density of ~47 nF/cm2. The equivalent capacitance density is 7.5 times higher than those without the ZnO layers insertion. It is believed that the defects in the ZnO layer served as trapping states to capture the carriers when charged and enhance the capacitance. This study provides a concept for increasing energy storage capability by utilizing the high surface-area nanostructure and the defects of the ZnO material.
關鍵字(中) ★ 原子層沉積法
★ 氧化鋅
★ 電容器
關鍵字(英) ★ Atomic layer deposition
★ ZnO
★ capacitor
論文目次
誌謝 II
中文摘要 III
Abstract IV
Contents V
List of figures VII
List of tables X
Chapter 1 Introduction 1
1-1. Textured surface nanocapacitors 1
1-1-1. Surface modification methods 2
1-1-2. High-k materials dielectric layer stacks 5
1-1-3. Insertion of a defects-rich oxide layer 6
1-2. Characteristics of ZnO 7
1-3. Patterned growth of ZnO array 8
1-4. Hydrothermally grown ZnO 10
1-4-1. Precursor concentration 11
1-4-2. pH values 13
1-4-3. Growth time 14
1-4-4. Effects of seed layer and substrate 15
1-5. Atomic layer deposition 17
1-5-1. In-situ doping AZO and dielectric Al2O3 thin film 18
Chapter 2 Motivation 20
Chapter 3 The study of the ZnO nanorod array 22
3-1. Experimental procedures 22
3-2. Results and discussion 24
3-2-1. Influence of pH on ZnO nanorods 25
3-2-2. Effect of precursor concentration on ZnO nanorods 29
3-2-3. Influence of reaction time on ZnO nanorods 31
3-2-4. Characteristics of nanorods 34
Chapter 4 The study of the ZnO nanorod array nanocapacitor 42
4-1. Experimental procedures 42
4-2. Results and discussion 44
4-2-1. Al2O3 dielectric properties 45
4-2-2. AZO/Al2O3/AZO nanocapacitor 47
4-2-3. Electrical properties of AZO/Al2O3/AZO 51
4-2-4. Effects of ZnO template density 52
4-2-5. Evaluation of ZnO nanocapacitors 56
4-2-6. Effects of insertion of the ZnO layers 56
4-2-7. Characteristics of 5-layer nanocapacitors 61
Chapter 5 Summary 66
References 68
參考文獻
[1] X. Zheng, X. Yan, Y. Sun, Z. Bai, G. Zhang, Y. Shen, et al., ”Au-Embedded ZnO/NiO Hybrid with Excellent Electrochemical Performance as Advanced Electrode Materials for Supercapacitor,” ACS Appl. Mater. Interfaces, vol. 7, 2015.
[2] Q. Li, Z. L. Wang, G. R. Li, R. Guo, L. X. Ding, and Y. X. Tong, ”Design and Synthesis of MnO2/Mn/MnO2 Sandwich-Structured Nanotube Arrays with High Supercapacitive Performance for Electrochemical Energy Storage,” Nano Lett., vol. 12, 2012.
[3] Z. L. Wang, X. J. He, S. H. Ye, Y. X. Tong, and G. R. Li, ”Design of Polypyrrole/Polyaniline Double-Walled Nanotube Arrays for Electrochemical Energy Storage,” ACS Appl. Mater. Interfaces, vol. 6, 2014.
[4] X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X.-b. Zhao, et al., ”High-Quality Metal Oxide Core Shell Nanowire Arrays on Conductive Substrates for Electrochemical Energy Storage,” ACS Nano, vol. 6, 2012.
[5] P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, et al., ”Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems,” ACS Nano, vol. 7, 2013.
[6] S. Gao, S. Jiao, B. Lei, H. Li, J. Wang, Q. Yu, et al., ”Efficient Photocatalyst Based on ZnO Nanorod Arrays/p-type Boron-Doped-Diamond Heterojunction,” J. Mater. Sci.: Mater. Electron., vol. 26, 2014.
[7] J. Park, D. S. Shin, and D.-H. Kim, ”Enhancement of Light Extraction in GaN-Based Light-Emitting Diodes by Al2O3-Coated ZnO Nanorod Arrays,” J. Alloy. Compd., vol. 611, 2014.
[8] K.-Y. Peng, Y.-H. Ho, D.-H. Wei, Y.-C. Yu, Y.-D. Yao, W.-C. Tian, et al., ”Efficiency Enhancement of Organic Light-Emitting Devices by Using Honeycomb Metallic Electrodes and Two-Dimensional Photonic Crystal Arrays,” Org. Electron., vol. 15, 2014.
[9] K.-Y. Peng and D.-H. Wei, ”Improving Light Extraction of Organic Light-Emitting Devices by Attaching Nanostructures with Self-Assembled Photonic Crystal Patterns,” Int. J. Photoenergy., vol. 2014, 2014.
[10] L. Zhang, X. Liu, Z. Lian, X. Wang, G. Shen, D. Shen, et al., ”Highly Efficient Field Emission from Large-Scale and Uniform Monolayer Graphene Sheet Supported on Patterned ZnO Nanorod Arrays,” J. Mater. Chem. C, vol. 2, 2014.
[11] Y. Saito and S. Uemura, ”Field Emission from Carbon Nanotubes and Its Application to Electron Sources,” Carbon, vol. 38, 2000.
[12] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, ”Field Emission from Well-Aligned Zinc Oxide Nanowires Grown at Low Temperature,” Appl. Phys. Lett., vol. 81, 2002.
[13] D. Tamvakos, S. Lepadatu, V.-A. Antohe, A. Tamvakos, P. M. Weaver, L. Piraux, et al., ”Piezoelectric Properties of Template-Free Electrochemically Grown ZnO Nanorod Arrays,” Appl. Surf. Sci., vol. 356, 2015.
[14] Z. L. Wang and J. Song, ”Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,” Science, vol. 312, 2006.
[15] Z. L. Wang, ”Nanopiezotronics,” Adv. Mater., vol. 19, 2007.
[16] J. Tornow, K. Ellmer, J. Szarko, and K. Schwarzburg, ”Voltage Bias Dependency of the Space Charge Capacitance of Wet Chemically Grown ZnO Nanorods Employed in a Dye Sensitized Photovoltaic Cell,” Thin Solid Films, vol. 516, 2008.
[17] K. V. Gurav, M. G. Gang, S. W. Shin, U. M. Patil, P. R. Deshmukh, G. L. Agawane, et al., ”Gas Sensing Properties of Hydrothermally Grown ZnO Nanorods with Different Aspect Ratios,” Sensor Actuat. B-Chem., vol. 190, 2014.
[18] Z. Wen, L. Zhu, Z. Zhang, and Z. Ye, ”Fabrication of Gas Sensor Based on Mesoporous Rhombus-Shaped ZnO Rod Arrays,” Sensor. Actuat. B-Chem., vol. 208, 2015.
[19] L. Wei, Q. X. Liu, B. Zhu, W. J. Liu, S. J. Ding, H. L. Lu, et al., ”Low-Cost and High-Productivity Three-Dimensional Nanocapacitors Based on Stand-Up ZnO Nanowires for Energy Storage,” Nanoscale. Res. Lett., vol. 11, Dec 2016.
[20] C. L. Pint, N. W. Nicholas, S. Xu, Z. Sun, J. M. Tour, H. K. Schmidt, et al., ”Three Dimensional Solid-State Supercapacitors from Aligned Single-Walled Carbon Nanotube Array Templates,” Carbon, vol. 49, 2011.
[21] L.-J. Li, B. Zhu, S.-J. Ding, H.-L. Lu, Q.-Q. Sun, A. Jiang, et al., ”Three-Dimensional AlZnO/Al2O3/AlZnO Nanocapacitor Arrays on Si Substrate for Energy Storage,” Nanoscale Res. Lett., vol. 7, 2012.
[22] M. Y. Ayad, M. Becherif, and A. Henni, ”Vehicle Hybridization with Fuel Cell, Supercapacitors and Batteries by Sliding Mode Control,” Renew. Energ., vol. 36, 2011.
[23] P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, and G. W. Rubloff, ”Nanotubular Metal-Insulator-Metal Capacitor Arrays for Energy Storage,” Nat. Nanotechnol., vol. 4, 2009.
[24] S.-Y. Lee, H. Kim, P. C. McIntyre, K. C. Saraswat, and J.-S. Byun, ”Atomic Layer Deposition of ZrO2 on W for Metal–Insulator–Metal Capacitor Application,” Appl. Phys. Lett., vol. 82, 2003.
[25] H.-Y. Kwak, S.-K. Kwon, H.-M. Kwon, S.-Y. Sung, S. Lim, C.-Y. Kim, et al., ”Characterization of Dielectric Relaxation and Reliability of High-k MIM Capacitor Under Constant Voltage Stress,” J. Semicond. Tech. Sci., vol. 14, 2014.
[26] H. Hu, C. Zhu, Y. F. Lu, M. F. Li, B. J. Cho, and W. K. Choi, ”A High Performance MIM Capacitor Using HfO2 Dielectrics,” IEEE Electr. Device. L., vol. 23, 2002.
[27] S.-J. Ding, H. Hu, L. H. F., K. S. J., Y. X. F., C. Zhu, et al., ”High-Performance MIM Capacitor Using ALD High-k HfO2-Al2O3 Laminate Dielectrics,” IEEE Electr. Device. L., vol. 24, 2003.
[28] E. Hourdakis, A. Travlos, and A. G. Nassiopoulou, ”High-Performance MIM Capacitors With Nanomodulated Electrode Surface,” IEEE T. Electron. Dev., vol. 62, 2015.
[29] J. H. Klootwijk, K. B. Jinesh, W. Dekkers, J. F. Verhoeven, F. C. van den Heuvel, H. D. Kim, et al., ”Ultrahigh Capacitance Density for Multiple ALD-Grown MIM Capacitor Stacks in 3-D Silicon,” IEEE Electr Device. L., vol. 29, 2008.
[30] L. C. Haspert, S. B. Lee, and G. W. Rubloff, ”Nanoengineering Strategies for Metal–Insulator–Metal Electrostatic Nanocapacitors,” ACS Nano, vol. 6, 2012.
[31] F. Han, G. Meng, F. Zhou, L. Song, X. Li, X. Hu, et al., ”Dielectric Capacitors with Three-Dimensional Nanoscale Interdigital Electrodes for Energy Storage,” Sci. Adv., vol. 1, 2015.
[32] M. Kemell, M. Ritala, M. Leskelä, E. Ossei-Wusu, J. Carstensen, and H. Föll, ”Si/ Al2O3/ ZnO:Al Capacitor Arrays Formed in Electrochemically Etched Porous Si by Atomic Layer Deposition,” Microelectron. Eng., vol. 84, 2007.
[33] H. C. Han, C. W. Chong, S. B. Wang, D. Heh, C. A. Tseng, Y. F. Huang, et al., ”High k Nanophase Zinc Oxide on Biomimetic Silicon Nanotip Array as Supercapacitors,” Nano Lett., vol. 13, 2013.
[34] J. J. Dong, X. W. Zhang, Z. G. Yin, S. G. Zhang, J. X. Wang, H. R. Tan, et al., ”Controllable Growth of Highly Ordered ZnO Nanorod Arrays via Inverted Self-Assembled Monolayer Template,” ACS Appl. Mater. Interfaces, vol. 3, 2011.
[35] Y. Zhao, P. Jiang, and S.-S. Xie, ”ZnO-Template-Mediated Synthesis of Three-Dimensional Coral-Like MnO2 Nanostructure for Supercapacitors,” J. Power Sources, vol. 239, 2013.
[36] J. Li, Q. Zhang, H. Peng, H. O. Everitt, L. Qin, and J. Liu, ”Diameter-Controlled Vapor-Solid Epitaxial Growth and Properties of Aligned ZnO Nanowire Arrays,” J. Phys. Chem. C vol. 113, 2009.
[37] I. Pastore, R. Poplausks, I. Apsite, I. Pastare, F. Lombardi, and D. Erts, ”Fabrication of Ultra Thin Anodic Aluminium Oxide Membranes by Low Anodization Voltages,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 23, 2011.
[38] B. Sunandan and D. Joydeep, ”Hydrothermal Growth of ZnO Nanostructures,” Sci. Technol. Adv. Mat., vol. 10, 2016.
[39] N. Tohge, S. Takahashi, and T. Minam, ”Preparation of PbZrO3–PbTiO3 Ferroelectric Thin Films by the Sol–Gel Process,” J. Am. Ceram. Soc., vol. 74, 1991.
[40] Y. Bai, Z. Y. Cheng, V. Bharti, H. S. Xu, and Q. M. Zhang, ”High-Dielectric-Constant Ceramic-Powder Polymer Composites,” Appl. Phys. Lett., vol. 76, 2000.
[41] Z.-M. Dang, Y.-H. Lin, and C.-W. Nan, ”Novel Ferroelectric Polymer Composites with High Dielectric Constants,” Adv. Mater., vol. 15, 2003.
[42] M. D. Groner, J. W. Elam, F. H. Fabreguette, and S. M. George, ”Electrical Characterization of Thin Al2O3 Films Grown by Atomic Layer Deposition on Silicon and Various Metal Substrates,” Thin Solid Films, vol. 413, 2002.
[43] H. C. Lin, P. D. Ye, and G. D. Wilk, ”Leakage Current and Breakdown Electric-Field Studies on Ultrathin Atomic-Layer-Deposited Al2O3 on GaAs,” Appl. Phys. Lett., vol. 87, 2005.
[44] S. H. Lin, K. C. Chiang, A. Chin, and F. S. Yeh, ”High-Density and Low-Leakage-Current MIM Capacitor Using Stacked TiO2 ZrO2 insulators,” IEEE Electr. Device. L., vol. 30, 2009.
[45] C. H. Cheng, S. H. Lin, K. Y. Jhou, W. J. Chen, C. P. Chou, F. S. Yeh, et al., ”High Density and Low Leakage Current in TiO2 MIM Capacitors Processed at 300 oC,” IEEE Electr. Device. L, vol. 29, 2008.
[46] S.-J. Ding, D. W. Zhang, and L.-K. Wang, ”Atomic-Layer-Deposited Al2O3-HfO2 Laminated and Sandwiched Dielectrics for Metal–Insulator–Metal Capacitors,” J. Phys. D: Appl. Phys., vol. 40, 2007.
[47] X. Yu, C. Zhu, H. Hu, C. A., L. M. F., B. J. Cho, et al., ”A High-Density MIM Capacitor (13 fF/μm2) Using ALD HfO2 Dielectrics,” IEEE Electr. Device. L., vol. 24, 2003.
[48] D. Panda and T.-Y. Tseng, ”Growth, Dielectric Properties, and Memory Device Applications of ZrO2 Thin Films,” Thin Solid Films, vol. 531, 2013.
[49] S. K. Kim and C. S. Hwang, ”Atomic Layer Deposition of ZrO2 Thin Films with High Dielectric Constant on TiN Substrates,” Electrochem. Solid St., vol. 11, 2008.
[50] B. C.-m. Lai and J. Y.-m. Lee, ”Leakage Current Mechanism of Metal ‐ Ta2O5 ‐ Metal Capacitors for Memory Device Applications,” J. Electrochem. Soc., vol. 146, 1999.
[51] J.-J. Yang, J.-D. Chen, R. Wise, P. Steinmann, M.-B. Yu, D.-L. Kwong, et al., ”Effective Modulation of Quadratic Voltage Coefficient of Capacitance in MIM Sm2O3 SiO2 Capacitors Using Dielectric Stack,” IEEE Electr Device. L., vol. 30, 2009.
[52] H. Yang, H. Wang, H. M. Luo, D. M. Feldmann, P. C. Dowden, R. F. DePaula, et al., ”Structural and Dielectric Properties of Epitaxial Sm2O3 Thin Films,” Appl. Phys. Lett., vol. 92, 2008.
[53] D. Martin, M. Grube, W. Weinreich, J. Müller, W. M. Weber, U. Schröder, et al., ”Mesoscopic Analysis of Leakage Current Suppression in ZrO2/Al2O3/ZrO2 Nano-Laminates,” J. Appl. Phys., vol. 113, 2013.
[54] D. Z. Austin, D. Allman, D. Price, S. Hose, and J. F. Conley, ”Plasma Enhanced Atomic Layer Deposition of Al2O3/SiO2 MIM Capacitors,” IEEE Electr. Device. L., vol. 36, 2015.
[55] T.-M. Pan, C.-I. Hsieh, T.-Y. Huang, J.-R. Yang, and P.-S. Kuo, ”Good High-Temperature Stability of TiN/Al2O3/WN/TiN Capacitors,” IEEE Electr. Device. L., vol. 28, 2007.
[56] C. L. Yuan and P. S. Lee, ”Enhanced Charge Storage Capability of Ge/GeO2 Core/Shell Nanostructure,” Nanotechnology, vol. 19, 2008.
[57] S. Maikap, W. Banerjee, T. C. Tien, T. Y. Wang, and J. R. Yang, ”Temperature-Dependent Physical and Memory Characteristics of Atomic-Layer-Deposited RuOx Metal Nanocrystal Capacitors,” J. Nanomater., vol. 2011, 2011.
[58] R. S. Bisht, R. R. Ghimire, and A. K. Raychaudhuri, ”Control of Grain Boundary Depletion Layer and Capacitance in ZnO Thin Film by a Gate with Electric Double Layer Dielectric,” J. Phys. Chem. C, vol. 119, 2015.
[59] J. B. Baxter, A. M. Walker, K. v. Ommering, and E. S. Aydil, ”Synthesis and Characterization of ZnO Nanowires and Their Integration into Dye-Sensitized Solar Cells,” Nanotechnology, vol. 17, 2006.
[60] N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, and K. Koumoto, ”Low-Temperature Fabrication of Light-Emitting Zinc Oxide Micropatterns Using Self-Assembled Monolayers,” Adv. Mater., vol. 14, 2002.
[61] K. Y. Ko, H. Kang, J. Park, B.-W. Min, H. S. Lee, S. Im, et al., ”ZnO Homojunction Core–Shell Nanorods Ultraviolet Photo-Detecting Diodes Prepared by Atomic Layer Deposition,” Sensor. Actuat A: Phys., vol. 210, 2014.
[62] D. Pullini, A. Pruna, S. Zanin, and D. B. Mataix, ”High Efficiency Electrodeposition of Large Scale ZnO Nanorod Arrays for Thin Transparent Electrodes,” J. Electrochem. Soc., vol. 159, 2012.
[63] A. Prun˘a, D. Pullini, and D. B. Mataix, ”Influence of Deposition Potential on Structure of ZnO Nanowires Synthesized in TrackEtched Membranes,” J Electrochem. Soc., vol. 159, 2012.
[64] O. Singh, N. Kohli, and R. C. Singh, ”Precursor Controlled Morphology of Zinc Oxide and Its Sensing Behaviour,” Sensor Actuat. B-Chem., vol. 178, 2013.
[65] V. F. Rivera, F. Auras, P. Motto, S. Stassi, G. Canavese, E. Celasco, et al., ”Length-Dependent Charge Generation from Vertical Arrays of High-Aspect-Ratio ZnO Nanowires,” Chem. Eur. J., vol. 19, 2013.
[66] H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, ”Low Temperature Synthesis of Flowerlike ZnO Nanostructures by Cetyltrimethylammonium Bromide-Assisted Hydrothermal Process,” J. Phys. Chem. B, vol. 108, 2004.
[67] A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, ”Zinc Oxide Nanowires in Chemical Bath on Seeded Substrates: Role of Hexamine,” J. Sol-Gel. Sci. Techn., vol. 39, 2006.
[68] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, et al., ”Room-Temperature Ultraviolet Nanowire Nanolasers,” Science, vol. 292, 2001.
[69] L. Miao, Y. Ieda, S. Tanemura, Y. G. Cao, M. Tanemura, Y. Hayashi, et al., ”Synthesis, Microstructure and Photoluminescence of Well-Aligned ZnO Nanorods on Si Substrate,” Sci. Technol. Adv. Mat., vol. 8, 2016.
[70] H.-G. Chen and Z.-W. Li, ”Seed-Assisted Growth of Epitaxial ZnO Nanorod Arrays with Self-Organized Periodicity and Directional Alignment,” Appl. Surf. Sci., vol. 258, 2011.
[71] G. Min, D. Peng, and C. Shengmin, ”Hydrothermal Growth of Well-Aligned ZnO Nanorod Arrays: Dependence of Morphology and Alignment Ordering upon Preparing Conditions,” J. Solid. State. Chem., vol. 178, 2005.
[72] J. M. Downing, M. P. Ryan, and M. A. McLachlan, ”Hydrothermal Growth of ZnO Nanorods: The Role of KCl in Controlling Rod Morphology,” Thin Solid Films, vol. 539, 2013.
[73] S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, et al., ”Patterned Growth of Vertically Aligned ZnO Nanowire Arrays on Inorganic Substrates at Low Temperature without Catelyst,” J. Am. Chem. Soc., vol. 130, 2008.
[74] D. S. Kim, R. Ji, H. J. Fan, F. Bertram, R. Scholz, A. Dadgar, et al., ”Laser-Interference Lithography Tailored for Highly Symmetrically Arranged ZnO Nanowire Arrays,” Small, vol. 3, 2007.
[75] A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, and M. Giersig, ”Shadow Nanosphere Lithography: Simulation and Experiment,” Nano. Lett., vol. 4, 2004.
[76] X. Wang, C. J. Summers, and Z. L. Wang, ”Large Scale Hexagonal-Patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosenseor arrays,” Nano Lett., vol. 4, 2004.
[77] D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, et al., ”Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere,” Nano. Lett., vol. 6, 2006.
[78] J. Zhang, Y. Li, X. Zhang, and B. Yang, ”Colloidal Self-Assembly Meets Nanofabrication: From Two-Dimensional Colloidal Crystals to Nanostructure Arrays,” Adv. Mater., vol. 22, 2010.
[79] M. Kondo, K. Shinozaki, L. Bergstroem, and N. Mizutani, ”Preparation of Colloidal Monolayers of Alkoxylated Silica Particles at the Air-Liquid Interface,” Langmuir, vol. 11, 1995.
[80] C. Lopez, ”Materials Aspects of Photonic Crystals,” Adv. Mater., vol. 15, 2003.
[81] J. J. Dong, X. W. Zhang, S. G. Zhang, H. R. Tan, Z. G. Yin, Y. Gao, et al., ”Polystyrene-Microsphere-Assisted Patterning of ZnO Nanostructures: Growth and Characterization,” J. Nanosci. Nanotechno., vol. 13, 2013.
[82] K. Byrappa and T. Adschiri, ”Hydrothermal Technology for Nanotechnology,” Prog. Cryst. Growth. Ch, vol. 53, 2007.
[83] G. Amin, M. H. Asif, A. Zainelabdin, S. Zaman, O. Nur, and M. Willander, ”Influence of pH, Precursor Concentration, Growth Time, and Temperature on the Morphology of ZnO Nanostructures Grown by the Hydrothermal Method,” J. Nanomater., vol. 2011, 2011.
[84] Z. Li, X. Huang, J. Liu, Y. Li, and G. Li, ”Morphology Control and Transition of ZnO Nanorod Arrays by a Simple Hydrothermal Method,” Mater. Lett., vol. 62, 2008.
[85] L. L. Yang, Q. X. Zhao, and M. Willander, ”Size-Controlled Growth of Well-Aligned ZnO Nanorod Arrays with Two-Step Chemical Bath Deposition Method,” J. Alloy. Compd., vol. 469, 2009.
[86] S. Xu, C. Lao, B. Weintraub, and Z. L. Wang, ”Density-Controlled Growth of Aligned ZnO Nanowire Arrays by Seedless Chemical Approach on Smooth Surfaces,” J. Mater. Res., vol. 23, 2011.
[87] C. Li, G. Hong, P. Wang, D. Yu, and L. Qi, ”Wet Chemical Approaches to Patterned Arrays of Well-Aligned ZnO Nanopillars Assisted by Monolayer Colloidal Crystals,” Chem. Mater., vol. 21, 2009.
[88] Y. He, T. Yanagida, K. Nagashima, F. Zhuge, G. Meng, B. Xu, et al., ”Crystal-Plane Dependence of Critical Concentration for Nucleation on Hydrothermal ZnO Nanowires,” J. Phys. Chem. C, vol. 117, 2013.
[89] M. N. R. Ashfold, R. P. Doherty, N. G. Ndifor-Angwafor, D. J. Riley, and Y. Sun, ”The Kinetics of the Hydrothermal Growth of ZnO Nanostructures,” Thin Solid Films, vol. 515, 2007.
[90] J. B. Baxter and E. S. Aydil, ”Epitaxial Growth of ZnO Nanowires on a- and c-plane Sapphire,” J. Cryst. Growth, vol. 274, 2005.
[91] Y. Chen, D. M. Bagnall, H.-j. Koh, K.-t. Park, K. Hiraga, Z. Zhu, et al., ”Plasma Assisted Molecular Beam Epitaxy of ZnO on c-plane Sapphire: Growth and Characterization,” J. Appl. Phys., vol. 84, 1998.
[92] R. Molaei, M. R. Bayati, H. M. Alipour, N. A. Estrich, and J. Narayan, ”Nanosecond Laser Switching of Surface Wettability and Epitaxial Integration of c-axis ZnO Thin Films with Si(111) Substrates,” J. Phys. Condens. Matter., vol. 26, 2014.
[93] H.-M. Cheng, H.-C. Hsu, S. Yang, C.-Y. Wu, Y.-C. Lee, L.-J. Lin, et al., ”The Substrate Effect on the In-plane Orientation of Vertically Well-Aligned ZnO Nanorods Grown on ZnO Buffer Layers,” Nanotechnology, vol. 16, 2005.
[94] H.-G. Chen, Z.-W. Li, and H.-D. Lian, ”Control of Epitaxial Growth Orientation in ZnO Nanorods on c-plane Sapphire Substrates,” Thin Solid Films, vol. 518, 2010.
[95] J. Narayan and B. C. Larson, ”Domain Epitaxy: A Unified Paradigm for Thin Film Growth,” J. Appl. Phys., vol. 93, 2003.
[96] T. Nakamura, Y. Yamada, T. Kusumori, H. Minouraa, and H. Muto, ”Improvement in the Crystallinity of ZnO Thin Films by Introduction of a Buffer Layer,” Thin Solid Films vol. 411, 2002.
[97] O. Lupan, T. Pauporté, B. Viana, I. M. Tiginyanu, V. V. Ursaki, and R. Cortès, ”Epitaxial Electrodeposition of ZnO Nanowire Arrays on p-GaN for Efficient UV-Light-Emitting Diode Fabrication,” ACS Appl. Mater. Inter., vol. 2, 2010.
[98] Y. Chen, S.-k. Hong, H.-j. Ko, V. Kirshner, H. Wenisch, T. Yao, et al., ”Effects of An Extremely Thin Buffer on Heteroepitaxy with Large Lattice Mismatch,” Appl. Phys. Lett. , vol. 78, 2001.
[99] K.-H. Bang, D.-K. Hwang, and J.-M. Myoung, ”Effects of ZnO Buffer Layer Thickness on Properties of ZnO Thin Films Deposited by Radio-Frequency Magnetron Sputtering,” Appl. Surf. Sci., vol. 207, 2003.
[100] W. Wu, G. Hu, S. Cui, Y. Zhou, and H. Wu, ”Epitaxy of Vertical ZnO Nanorod Arrays on Highly (001)-Oriented ZnO Seed Monolayer by a Hydrothermal Route,” Cryst. Growth. Des., vol. 8, 2008.
[101] T. F. Chung, J. A. Zapien, and S.-T. Lee, ”Luminescent Properties of ZnO Nanorod Arrays Grown on Al:ZnO Buffer Layer,” J. Phys. Chem. C, vol. 112, 2008.
[102] T. Suntola and J. Hyvarinen, ”Atomic Layer Epitaxy,” Annu. Rev. Mater. Sci., vol. 15, 1986.
[103] S. M. George, ”Atomic Layer Deposition An Overview,” Chem. Rev., vol. 110, 2010.
[104] J. R. Bakke, K. L. Pickrahn, T. P. Brennan, and S. F. Bent, ”Nanoengineering and Interfacial Engineering of Photovoltaics by Atomic Layer Deposition,” Nanoscale, vol. 3, 2011.
[105] T. Tynell, H. Yamauchi, M. Karppinen, R. Okazaki, and I. Terasaki, ”Atomic Layer Deposition of Al-doped ZnO Thin Films,” J. Vac. Sci. Technol. A, vol. 31, 2013.
[106] C.-S. Ku, J.-M. Huang, C.-M. Lin, and H.-Y. Lee, ”Fabrication of Epitaxial ZnO Films by Atomic-Layer Deposition with Interrupted Flow,” Thin Solid Films, vol. 518, 2009.
[107] J.-M. Huang, C.-S. Ku, H.-Y. Lee, C.-M. Lin, and S.-Y. Chen, ”Growth of High-Quality Epitaxial ZnO Films on (10–10) Sapphire by Atomic Layer Deposition with Flow-Rate Interruption Method,” Surf. Coat. Tech., vol. 231, 2013.
[108] G. Zhang, H. Wu, C. Chen, T. Wang, J. Yue, and C. Liu, ”Transparent and Flexible Capacitors Based on Nanolaminate Al2O3/TiO2/Al2O3,” Nanoscale Res. Lett., vol. 10, 2015.
[109] R. Wahab, S. G. Ansari, Y. S. Kim, M. Song, and H.-S. Shin, ”The Role of pH Variation on the Growth of Zinc Oxide Nanostructures,” Appl. Surf. Sci., vol. 255, 2009.
[110] O. Singh, M. P. Singh, N. Kohli, and R. C. Singh, ”Effect of pH on the Morphology and Gas Sensing Properties of ZnO Nanostructures,” Sensor Actuat. B-Chem., vol. 166-167, 2012.
[111] L. W. Chou and A. T. Wu, ”Application of Nanostructural Transparent Conductive Oxides,” Ph.D., Chemical and Material Engineering, National Central University 2015.
[112] P. Fons, K. Iwata, S. Niki, A. Yamada, and K. Matsubara, ”Growth of High-Quality Epitaxial ZnO Films on a-Al2O3,” J. Cryst. Growth, vol. 201/202, 1999.
[113] B.-C. Lin, C.-S. Ku, H.-Y. Lee, and A. T. Wu, ”Epitaxial Growth of ZnO Nanorod Arrays via a Self-Assembled Microspheres Lithography,” Appl. Surf. Sci., vol. 414, 2017.
[114] K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisic, C. C. Ling, C. D. Beling, et al., ”Defects in ZnO Nanorods Prepared by a Hydrothermal Method,” J. Phys. Chem. B, vol. 110, 2006.
[115] C. Xu, G. Xu, Y. Liu, and G. Wang, ”A Simple and Novel Route for the Preparation of ZnO Nanorods,” Solid State Commun., vol. 122, 2002.
[116] R. Ludeke, M. T. Cuberes, and E. Cartier, ”Local Transport and Trapping Issues in Al2O3 Gate Oxide Structures,” Appl. Phys. Lett., vol. 76, 2000.
[117] N. Batra, J. Gope, Vandana, J. Panigrahi, R. Singh, and P. K. Singh, ”Influence of deposition temperature of thermal ALD deposited Al2O3 films on silicon surface passivation,” AIP Advances, vol. 5, p. 067113, 2015.
[118] G. Seguini, E. Cianci, C. Wiemer, D. Saynova, J. A. M. van Roosmalen, and M. Perego, ”Si surface Passivation by Al2O3 Thin Films Deposited Using a Low Thermal Budget Atomic Layer Deposition Process,” Appl. Phys. Lett., vol. 102, 2013.
[119] D.-R. Hang, S. E. Islam, K. H. Sharma, S.-W. Kuo, C.-Z. Zhang, and J.-J. Wang, ”Annealing Effects on the Optical and Morphological Properties of ZnO Nanorods on AZO Substrate by Using Aqueous Solution Method at Low Temperature,” Nanoscale Res. Lett., vol. 9, 2014.
[120] S. M. Hatch, J. Briscoe, A. Sapelkin, W. P. Gillin, J. B. Gilchrist, M. P. Ryan, et al., ”Influence of Anneal Atmosphere on ZnO-Nanorod Photoluminescent and Morphological Properties with Self-Powered Photodetector Performance,” J. Appl. Phys., vol. 113, 2013.
[121] Y. Yang, D. S. Kim, M. Knez, R. Scholz, A. Berger, E. Pippel, et al., ”Influence of Temperature on Evolution of Coaxial ZnO/ Al2O3 One-Dimensional Heterostructures From Core-Shell Nanowires to Spinel Nanotubes and Porous Nanowires,” J. Phys. Chem. C, vol. 112, 2008.
[122] H. J. Fan, M. Knez, R. Scholz, Dietrich Hesse, K. Nielsch, M. Zacharias, et al., ”Influence of Surface Diffusion on the Formation of Hollow Nanostructures Induced by the Kirkendall Effect  The Basic Concept,” Nano Lett., vol. 7, 2007.
[123] M. Grunze, W. Hirschwald, and D. Hofmann, ”Zinc Oxide Surface Structure, Stability, and Mechanisms of Surface Reactions,” J. Cryst. Growth, vol. 52, 1981.
[124] I. W. Kim, S. J. Doh, C. C. Kim, J. H. Je, J. Tashiro, and M. Yoshimoto, ”Effect of Evaporation on Surface Morphology of Epitaxial ZnO Films during Postdeposition Annealing,” Appl. Surf. Sci., vol. 241, 2005.
[125] K.-N. Tu, J. W. Mayer, and L. C. Feldman, Electronic Thin Film Science For Electrical Engineers and Materials Scientisits, 1992.
[126] L. Scheffler, V. Kolkovsky, E. V. Lavrov, and J. Weber, ”Deep Level Transient Spectroscopy Studies of n-type ZnO Single Crystals Grown by Different Techniques,” J. Phys. Condens. Matter., vol. 23, 2011.
[127] A. Elhami Khorasani, D. K. Schroder, and T. L. Alford, ”A Fast Technique to Screen Carrier Generation Lifetime Using DLTS on MOS Capacitors,” IEEE T. Electron. Dev., vol. 61, 2014.
[128] V. Quemener, ”Electrical Characterization of Bulk and Thin Film Zinc Oxide,” Ph.D., Department of Physics Faculty of Mathematics Natural Sciences University of Oslo, 2012.
[129] R. S. Wang, Q. L. Gu, C. C. Ling, and H. C. Ong, ”Studies of Oxide/ZnO Near-Interfacial Defects by Photoluminescence and Deep Level Transient Spectroscopy,” Appl. Phys. Lett., vol. 92, 2008.
[130] Y. Zhu, C. H. Sow, T. Yu, Q. Zhao, P. Li, Z. Shen, et al., ”Co-synthesis of ZnO–CuO Nanostructures by Directly Heating Brass in Air,” Adv. Funct. Mater., vol. 16, 2006.
[131] A. M. Gsiea, J. P. Goss, P. R. Briddon, R. M. Al-habashi, K. M. Etmimi, K. A. S., et al., ”Native Point Defects in ZnO,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 8, 2014.
[132] D. Das and P. Mondal, ”Photoluminescence Phenomena Prevailing in c-axis Oriented Intrinsic ZnO Thin Films Prepared by RF Magnetron Sputtering,” RSC. Adv., vol. 4, 2014.
[133] A. A. Sokol, S. A. French, S. T. Bromley, C. R. A. Catlow, H. J. J. van Dam, and P. Sherwood, ”Point Defects in ZnO,” Faraday Discuss., vol. 134, 2007.
[134] B. Lin, Z. Fu, Y. Jia, and G. Liao, ”Defect Photoluminescence of Undoping ZnO Films and Its Dependence on Annealing Conditions,” J. Electrochem. Soc., vol. 148, 2001.
指導教授 吳子嘉 審核日期 2017-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明