參考文獻 |
[1] R. P. Feynman, “There′s plenty of room at the bottom.” Engineering and science, 23.5 (1960) 22-36.
[2] R. Kubo, “Electronic Properties of Metallic Fine Particles. I.” Journal of the Physical Society of Japan, 17 (1962) 975-986.
[3] S. Ciraci, and I. P. Batra, “Theory of the quantum size effect in simple metals.” Physical Review B, 33.6 (1986) 4294.
[4] R. Koole, E. Groeneveld, D. Vanmaekelbergh, A. Meijerink, and C. de M. Donega, “Size Effects on Semiconductor Nanoparticles.” In Nanoparticles: Springer Berlin Heidelberg, (2014) 13-51.
[5] S. L. Cheng, S. W. Lu, C. H. Li, Y. C. Chang, C. K. Huang, and H. Chen, “Fabrication of periodic nickel silicide nanodot arrays using nanosphere lithography.” Thin solid films, 494.1 (2006) 307-310.
[6] X. Huang, D. Ratchford, P. E. Pehrsson, and J. Yeom, “Fabrication of metallic nanodisc hexagonal arrays using nanosphere lithography and two-step lift-off.” Nanotechnology, 27.39 (2016) 395302.
[7] B. J. Y. Tan, C. H. Sow, T. S. Koh, K. C. Chin, A. T. S. Wee, and C. K. Ong, “Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing.” The Journal of Physical Chemistry B, 109.22 (2005) 11100-11109.
[8] H. Li, J. Low, K. S. Brown, and N. Wu, “Large-area well-ordered nanodot array pattern fabricated with self-assembled nanosphere template.” IEEE Sensors Journal, 8.6 (2008) 880-884.
[9] W. W. Wu, J. H. He, S. L. Cheng, S. W. Lee, and L. J. Chen, “Self-assembled NiSi quantum-dot arrays on epitaxial Si0.7Ge0.3 on (001) Si.” Applied physics letters, 83.9 (2003) 1836-1838.
[10] X. Liu, B. Choi, N. Gozubenli, and P. Jiang, “Periodic arrays of metal nanorings and nanocrescents fabricated by a scalable colloidal templating approach.” Journal of colloid and interface science, 409 (2013) 52-58.
[11] Ghosh, Tanmay, B. Satpati, and D. Senapati, “Characterization of bimetallic core–shell nanorings synthesized via ascorbic acid-controlled galvanic displacement followed by epitaxial growth.” Journal of Materials Chemistry C, 2.13 (2014) 2439-2447.
[12] J. H. He, W. W. Wu, Y. L. Chueh, C. L. Hsin, L. J. Chen, and L. J. Chou, “Formation and evolution of self-assembled crystalline Si nanorings on (001) Si mediated by Au nanodots.” Applied Physics Letters, 87.22 (2005) 223102.
[13] Z. A. Lewicka, A. Bahloul, W. W. Yu, and V. L. Colvin, “A facile fabrication process for polystyrene nanoring arrays.” Nanoscale 5.22 (2013) 11071-11078.
[14] J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgstrom1, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit.” Science 339.6123 (2013) 1057-1060.
[15] C. T. Black, “Self-aligned self assembly of multi-nanowire silicon field effect transistors.” Applied Physics Letters, 87.16 (2005) 163116.
[16] W. C. Tian, Y. H. Ho, C. H. Chen, and C. Y. Kuo, “Sensing performance of precisely ordered TiO2 nanowire gas sensors fabricated by electron-beam lithography.” Sensors 13.1 (2013) 865-874.
[17] F. C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, “Electron field emission from silicon nanowires.” Applied Physics Letters, 75.12 (1999) 1700-1702.
[18] N. Verplanck, E. Galopin, J. C. Camart, and V. Thomy, “Reversible electrowetting on superhydrophobic silicon nanowires.” Nano letters, 7.3 (2007) 813-817.
[19] S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone–polymer solar cells.” Nano letters, 12.6 (2012) 2971-2976.
[20] F. Teng, N. Li, D. Xu, D. Xiao, X. Yang, and N. Lu, “Precise regulation of tilt angle of Si nanostructures via metal-assisted chemical etching.” Nanoscale, 9.1 (2017) 449-453.
[21] S. E. Han, and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics.” Nano letters 10.3 (2010) 1012-1015.
[22] M. Ge, X. Fang, J. Rong, and C. Zhou, “Review of porous silicon preparation and its application for lithium-ion battery anodes.” Nanotechnology, 24.42 (2013) 422001.
[23] V. Vicky, N. A. Chaniotakis, “DNA Stabilization and Hybridization Detection on Porous Silicon Surface by EIS and Total Reflection FT?IR Spectroscopy.” Electroanalysis, 20.17 (2008) 1845-1850.
[24] I. Sumio, “Helical microtubules of graphitic carbon.” Nature, 354.6348 (1991) 56.
[25] F. D. Nayeri, M. Kolahdouz, E. Asl-Soleimani, and S. Mohajerzadeh, “Low temperature carving of ZnO nanorods into nanotubes for dye-sensitized solar cell application.” Journal of Alloys and Compounds, 633 (2015) 359-365.
[26] N. Du, H. Zhang, B. Chen, X. Ma, Z. Liu, J. Wu, and D. Yang, “Porous Indium Oxide Nanotubes: Layer?by?Layer Assembly on Carbon?Nanotube Templates and Application for Room?Temperature NH3 Gas Sensors.” Advanced Materials, 19.12 (2007) 1641-1645.
[27] Z. Li, H. Wanga, P. Liu, B. Zhao, and Y. Zhang, “Synthesis and field-emission of aligned SnO2 nanotubes arrays.” Applied Surface Science, 255.8 (2009) 4470-4473.
[28] Q. Wang, K. Yu, and F. Xu, “Synthesis and field emission of two kinds of hierarchical SnO2 nanostructures.” Solid state communications, 143.4 (2007) 260-263.
[29] Y. H. Yang, K. M. Ahn, S. M. Kang, S. H. Moon, and B. T. Ahn1, “Fabrication of a high-performance poly-Si thin-film transistor using a poly-Si film prepared by silicide-enhanced rapid thermal annealing process.” Electronic Materials Letters, 10.6 (2014) 1081-1085.
[30] G. Liu, J. Zhang, C. K. Tan, and N. Tansu, “Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes.” IEEE Photonics Journal, 5.2 (2013) 2201011-2201011.
[31] H. F. Hsu, C. A. Chen, S. W. Liu, and C. K. Tang, “Fabrication and Gas-Sensing Properties of Ni-Silicide/Si Nanowires.” Nanoscale research letters, 12.1 (2017) 182.
[32] L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima and J. Rand, “Silicon nanowire solar cells.” Applied Physics Letters, 91.23 (2007) 233117.
[33] S. Misra, L. Yu, M. Foldyna, P. R. Cabarrocas, “High efficiency and stable hydrogenated amorphous silicon radial junction solar cells built on VLS-grown silicon nanowires.” Solar Energy Materials and Solar Cells, 118 (2013) 90-95.
[34] A. D. Mohite, D. E. Perea, S. Singh, S. A. Dayeh, I. H. Campbell, S. T. Picraux, and H. Htoon, “Highly efficient charge separation and collection across in situ doped axial VLS-grown Si nanowire p–n junctions.” Nano letters, 12.4 (2012) 1965-1971.
[35] L. Yu, P. R. Cabarrocas, “Morphology control and growth dynamics of in-plane solid–liquid–solid silicon nanowires.” Physica E: Low-dimensional Systems and Nanostructures, 44.6 (2012) 1045-1049.
[36] Y. Li, P. Liang, X. Yang, H. Cai,Q. You, J. Sun, N. Xu, J. Wu, “Fabrication and short-wavelength light emission of Si nanowires grown via quasi solid–liquid–solid mechanism.” Materials Letters, 134 (2014) 5-8.
[37] T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, U. Gosele, “Synthesis of Vertical High?Density Epitaxial Si (100) Nanowire Arrays on a Si (100) Substrate Using an Anodic Aluminum Oxide Template.” Advanced Materials, 19.7 (2007) 917-920.
[38] S. Merzsch, F. Steib, H. S. Wasisto, A. Stranz, P. Hinze, T. Weimann, E. Peiner, and A. Waag, “Production of vertical nanowire resonators by cryogenic-ICP–DRIE.” Microsystem technologies, 20.4-5 (2014) 759-767.
[39] Z. Huang, H. Fang, and J. Zhu, “Fabrication of silicon nanowire arrays with controlled diameter, length, and density.” Advanced materials, 19.5 (2007) 744-748.
[40] Z. Huang, X. Zhang, M. Reiche, L. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gosele, “Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching.” Nano letters, 8.9 (2008) 3046-3051.
[41] W. Chern, K. Hsu, I. S. Chun, B. P. de Azeredo, N. Ahmed, K. H. Kim, J. Zuo, N. Fang, P. Ferreira, and X. Li, “Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays.” Nano letters, 10.5 (2010) 1582-1588.
[42] Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gosele, “Metal?assisted chemical etching of silicon: a review.” Advanced materials, 23.2 (2011) 285-308.
[43] K. Q. Peng, Y. J. Yan, S. P.Gao, and J. Zhu, “Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry.” Advanced Materials, 14.16 (2002) 1164.
[44] Y. Awad, E. Lavallee, K. M. Lau, J. Beauvais, D. Drouin, M. Cloutier, D. Turcotte, P. Yang, and P. Kelkar, “Arrays of holes fabricated by electron-beam lithography combined with image reversal process using nickel pulse reversal plating.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 22.3 (2004) 1040-1043.
[45] Z. P. Li, Z. M. Xu, X. P. Qu, S. B. Wang, J. Peng, and L. H. Mei, “Fabrication of nanopore and nanoparticle arrays with high aspect ratio AAO masks.” Nanotechnology, 28.9 (2017) 095301.
[46] D. Di, X. Wu, P. Dong, C. Wang, J. Chen, H. Wang, J. Wang, and S. Li, “Simple, fast, and cost-effective fabrication of wafer-scale nanohole arrays on silicon for antireflection.” Journal of Nanomaterials, 2014 (2014) 8.
[47] F. Wang, H. Y. Yu, X. Wang, J. Li, X. Sun, M. Yang, S. M. Wong, and H. Zheng, “Maskless fabrication of large scale Si nanohole array via laser annealed metal nanoparticles catalytic etching for photovoltaic application.” Journal of Applied Physics, 108.2 (2010) 024301.
[48] K. Q. Peng, X. Wang, L. Li, X. L. Wu, and S. T. Lee, “High-performance silicon nanohole solar cells.” Journal of the American Chemical Society, 132.20 (2010) 6872-6873.
[49] D. Brodoceanu, R. Elnathan, B. P. Simo?n, B. Delalat, T. Guinan, E. Kroner, N. H. Voelcker, and T. Kraus, “Dense arrays of uniform submicron pores in silicon and their applications.” ACS applied materials & interfaces, 7.2 (2015) 1160-1169.
[50] J. Jia, H. Zhanga, Y. Qiua, L. Wang, Y. Wang, L. Hua, “Fabrication and photoelectrochemical properties of ordered Si nanohole arrays.” Applied Surface Science, 292 (2014) 86-92.
[51] Z. Zhang, L. Liu, T. Shimizu, S. Senz, and U. Gosele, “Synthesis of silicon nanotubes with cobalt silicide ends using anodized aluminum oxide template.” Nanotechnology 21.5 (2009) 055603.
[52] J. Mallet, F. Martineau, K. Namur, and M. Molinari, “Electrodeposition of silicon nanotubes at room temperature using ionic liquid.” Physical Chemistry Chemical Physics, 15.39 (2013) 16446-16449.
[53] A. Convertino, M. Cuscuna, and F. Martelli, “Silicon nanotubes from sacrificial silicon nanowires: fabrication and manipulation via embedding in flexible polymers.” Nanotechnology 23.30 (2012) 305602.
[54] J. Hu, Y. Bando, Z. Liu, J. Zhan, D. Golberg, and T. Sekiguchi, “Synthesis of crystalline silicon tubular nanostructures with ZnS nanowires as removable templates.” Angewandte Chemie International Edition, 43.1 (2004) 63-66.
[55] N. J. Quitoriano, M. Belov, S. Evoy, and T. I. Kamins, “Single-crystal, Si nanotubes, and their mechanical resonant properties.” Nano letters, 9.4 (2009) 1511-1516.
[56] R. Epur, P. J. Hanumantha, M. K. Datta, D. Hong, B. Gattuc, and P. N. Kumta, “A simple and scalable approach to hollow silicon nanotube (h-SiNT) anode architectures of superior electrochemical stability and reversible capacity.” Journal of Materials Chemistry A, 3.20 (2015) 11117-11129.
[57] Z. Li, Y. Chen, X. Zhu, M. Zheng, F. Dong, P. Chen, L. Xu, W. Chu, and H. Duan, “Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching.” Nanotechnology, 27.36 (2016) 365302.
[58] Y. He, X. Che, and L. Que, “A Top-Down Fabrication Process for Vertical Hollow Silicon Nanopillars.” Journal of Microelectromechanical Systems, 25.4 (2016) 662-667.
[59] S. Soleimani-Amiri, A. Gholizadeh, S. Rajabali, Z. Sanaee, and S. Mohajerzadeh, “Formation of Si nanorods and hollow nano-structures using high precision plasma-treated nanosphere lithography.” RSC Advances, 4.25 (2014) 12701-12709.
[60] H. Jeong, J. Lee, C. Bok, S. H. Lee, and S. Yoo, ”Fabrication of Vertical Silicon Nanotube Array Using Spacer Patterning Technique and Metal-Assisted Chemical Etching.” IEEE Transactions on Nanotechnology, 16.1 (2017) 130-134.
[61] Y. Y. Kim, H. J. Kim, J. H. Jeong, J. Lee, J. H. Choi, J. Y. Jung, J. H. Lee, H. Cheng, K. W. Lee, and D. G. Choi, “Facile Fabrication of Silicon Nanotube Arrays and Their Application in Lithium?Ion Batteries.” Advanced Engineering Materials, 18.8 (2016) 1349-1353.
[62] P. Chen, Y. Fan, and Z. Zhong, “The Fabrication and Application of Patterned Si (001) Substrates with Ordered Pits Via Nanosphere Lithography,” Nanotechnology 20 (2009) 095303.
[63] G. M. Whitesides, and B. Grzybowski, “Self-Assembly at All Scales,” Science 295 (2002) 2418-2421.
[64] S. M. Yang, N. Coombs, and G. A. Ozin, “Micromolding in Inverted Polymer Opals (MIPO): Synthesis of Hexagonal Mesoporous Silica Opals,” Adv. Mater. 12 (2000) 1940-1944.
[65] H. J. Nam, D. Y. Jung, G. Y, and H. Choi, “Close-Packed Hemispherical Microlens Array from Two-Dimensional Ordered Polymeric Microspheres,” Langmuir 22 (2006) 7358-7363.
[66] F. Fleischhaker, A. C. Arsenault, Z. Wang, V. Kitaev, F. C. Peiris, G. V. Freymann, I. Manners, R. Zentel, and G. A. Ozin, “Redox-Tunable Defects in Colloidal Photonic Crystals,” Adv. Mater. 17 (2005) 2455-2458.
[67] J. Dutta and H. Hofmann, “Self-Organization of Colloidal Nanoparticles,” Encyclopedia of Nanosci. and Nanotech. (2003) 1-23.
[68] K. Nagayama, “Two-Dimensional Self-Assembly of Colloids in Thin Liquid Films,” Colloids Surf. A 109 (1996) 363-374.
[69] P. A. Kralchevsky and K. Nagayama, “Capillary Forces between Colloidal Particles,” Langmuir 10 (1994) 23-36.
[70] P. A. Kralchevsky, V. N. Paunov, I. B. Ivanov, and K. Nagayama, “Capillary Meniscus Interactions Between Colloidal Particles Attached to a Liquid-Fluid Interface,” J. Colloid Interface Sci. 151 (1992) 79-94.
[71] P. A. Kralchevsky, V. N. Paunov, N. D. Denkov, I. B. Ivanov, and K. Nagayama, “Energetical and Force Approaches to the Capillary Interactions between Particles Attached to a Liquid-Fluid Interface,” J. Colloid Interface Sci. 155 (1993) 420-437.
[72] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates,” Langmuir 8 (1992) 3183-3190.
[73] F. Jarai-Szabo, S. Astilean, and Z. Neda, “Understanding Self-Assembled Nanosphere Patterns,” Chem. Phys. Lett. 408 (2005) 241-246.
[74] Y. Li, W. Cai, G. Duan, F. Sun, B. Cao, and F. Lu, “2D Nanoparticle Arrays by Partial Dissolution of Ordered Pore Films,” Mater. Lett. 59 (2005) 276-279.
[75] H. Li, J. Low, K. S. Brown, and N. Wu, “Large-Area Well-Ordered Nanodot Array Pattern Fabricated With Self-Assembled Nanosphere Template,” IEEE Sensors Journal 8 (2008) 880-884.
[76] V. Ng, Y. V. Lee, B. T. Chen, and A. O. Adeyeye, “Nanostructure Array Fabrication with Temperature-Controlled Self-Assembly Techniques,” Nanotechnology 13 (2002) 554-558.
[77] P. Jiang and M. J. McFarland, “Large-scale Fabrication of Wafer-Size Colloidal Crystals, Macroporous Polymers and Nanocomposites by Spin-coating,” J. Am. Chem. Soc. 126 (2004) 13778-13786.
[78] M. Marquez and B. P. Grady, “The Use of Surface Tension to Predict the Formation of 2D Arrays of Latex Spheres Formed via the Langmuir-Blodgett-Like Technique,” Langmuir 20 (2004) 10677-10683.
[79] S. L. Cheng, Y. H. Lin, S. W. Lee, T. Lee, H. Chen, J. C. Hu, and L. T. Chen, “Fabrication of Size-tunable, Periodic Si Nanohole Arrays by Plasma Modified Nanosphere Lithography and Anisotropic Wet Etching,” Appl. Surf. Sci. 263 (2012) 430-435.
[80] J. Ji, H. Zhang, Y. Qiu, L. Wang, Y. Wang, and L. Hu, “Fabrication and Photoelectrochemical Properties of Ordered Si Nanohole Arrays,” Appl. Surf. Sci. 292 (2014) 86-92.
[81] H. C. Wu, X. B. Xu, M. Y. He, M. Q. Zhang, K. J. Ma, and M. D. Bao, “Fabrication of Size-tunable Antireflective Nanopillar Array using Hybrid Nano-patterning Lithography,” Surf. Coat. Tech. 240 (2014) 413-418.
[82] J. C. Hulteen and R. P. V. Duyne, “Nanosphere Lithography: Amaterials General Fabrication Process for Periodic Particle Array Surface,” J. Vac. Sci. Tech. A13 (1995) 1553-1558.
[83] E. Vazsonyi, E. Szilagyib, P. Petrika, Z. E. Horvatha, T. Lohner, M. Frieda, G. Jalsovszky, “Porous silicon formation by stain etching.” Thin Solid Films, 388.1 (2001) 295-302.
[84] X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon.” Applied Physics Letters, 77.16 (2000) 2572-2574.
[85] J. Wang, G. Duan, Y. Li, G. Liu, and W. Cai, “Wet etching-assisted colloidal lithography: a general strategy toward nanodisk and nanohole arrays on arbitrary substrates.” ACS applied materials & interfaces, 6.12 (2014) 9207-9213.
[86] Y. H. Chang, W. H. Hsu, S. L. Wu, and Y. C. Ding, ‘The synthesis of a gold nanodisk–molecular layer–gold film vertical structure: a molecular layer as the spacer for SERS hot spot investigations.” Materials Chemistry Frontiers, 1.5 (2017) 922-927.
[87] J. M. McLellan, M. Geissler, and Y. Xia, “Edge spreading lithography and its application to the fabrication of mesoscopic gold and silver rings.” Journal of the American Chemical Society, 126.35 (2004) 10830-10831.
[88] M. Geissler, H. Wolf, R. Stutz, E. Delamarche, U. W. Grummt, B. Michel, and A. Bietsch, “Fabrication of metal nanowires using microcontact printing.” Langmuir, 19.15 (2003) 6301-6311.
[89] J. Li, J. D. Miller, “Reaction kinetics of gold dissolution in acid thiourea solution using ferric sulfate as oxidant.” Hydrometallurgy, 89.3 (2007) 279-288.
[90] T. Groenewald, “The dissolution of gold in acidic solutions of thiourea.” Hydrometallurgy, 1.3 (1976) 277-290.
[91] C. K. Chen, T. N. Lung, and C. C. Wan, “A study of the leaching of gold and silver by acidothioureation.” Hydrometallurgy, 5.2-3 (1980) 207-212. |