參考文獻 |
1.劉煜彤,液體與沙粒特性對動態毛細壓力與入滲現象影響之觀測,碩士論文,國立中央大學,2015
2.Anwar, A. H. M. F., & Thien, L. C. (2015). Investigating Leachate Transport at Landfill Site Using HYDRUS-1D. International Journal of Environmental Science and Development, 6(10), 741-745. doi:10.7763/ijesd.2015.v6.691
3.Assefa, K. A., & Woodbury, A. D. (2013). Transient, spatially varied groundwater recharge modeling. Water Resources Research, 49(8), 4593-4606. doi:10.1002/wrcr.20332
4.Barenblatt, G. I., Patzek, T. W., & Silin, D. B. (2003). The Mathematical Model of Nonequilibrium Effects in Water-Oil Displacement. Spe Journal, 8(04), 409-416. doi:10.2118/87329-pa
5.Bogena, H. R., Huisman, J. A., Oberdörster, C., & Vereecken, H. (2007). Evaluation of a low-cost soil water content sensor for wireless network applications. Journal of Hydrology, 344(1-2), 32-42. doi:10.1016/j.jhydrol.2007.06.032
6.Brooks, R. H., & Corey, A. T. (1964). Hydraulic Properties of Porous Media and Their Relation to Drainage Design. Transactions of the ASAE, 7(1), 0026-0028. doi:10.13031/2013.40684
7.Camps-Roach, G., O′Carroll, D. M., Newson, T. A., Sakaki, T., & Illangasekare, T. H. (2010). Experimental investigation of dynamic effects in capillary pressure: Grain size dependency and upscaling. Water Resources Research, 46(8), n/a-n/a. doi:10.1029/2009wr008881
8.Elzeftawy, A., & Mansell, R. S. (1975). Hydraulic Conductivity Calculations for Unsaturated Steady-State and Transient-State Flow in Sand1. Soil Science Society of America Journal, 39(4), 599. doi:10.2136/sssaj1975.03615995003900040013x
9.Hassanizadeh, S. M., Celia, M. A., & Dahle, H. K. (2002). Dynamic Effect in the Capillary Pressure-Saturation Relationship and its Impacts on Unsaturated Flow. Vadose Zone Journal, 1(1), 38-57. doi:10.2136/vzj2002.3800
10.Hassanizadeh, S. M., & Gray, W. G. (1990). Mechanics and Thermodynamics of Multiphase Flow in Porous-Media Including Interphase Boundaries. Advances in Water Resources, 13(4), 169-186. doi:Doi 10.1016/0309-1708(90)90040-B
11.Hassanizadeh, S. M., & Gray, W. G. (1993). Thermodynamic Basis of Capillary-Pressure in Porous-Media. Water Resources Research, 29(10), 3389-3405. doi:Doi 10.1029/93wr01495
12.Hassanizadeh, S. M., M.A. Celia, and H.K. Dahle. (1993). Toward an improved description of the physics of two-phase flow. Advances in Water Resources, 16(1), 53-67. doi:10.1016/0309-1708(93)90029-f
13.Hou, L., Chen, L., & Kibbey, T. C. G. (2012). Dynamic capillary effects in a small-volume unsaturated porous medium: Implications of sensor response and gas pressure gradients for understanding system dependencies. Water Resources Research, 48(11), n/a-n/a. doi:10.1029/2012wr012434
14.Juanes, R. (2008). Nonequilibrium effects in models of three-phase flow in porous media. Advances in Water Resources, 31(4), 661-673. doi:10.1016/j.advwatres.2007.12.005
15.Kalaydjian, F. J. M. (1994). Dynamic Capillary Pressure Curve for Water/Oil Displacement in Porous Media: Theory vs. Experiment.
16.Klute, A., & Gardner, W. R. (1962). Tensiometer response time. Soil Science, 93(3), 204-207.
17.Manthey, S. (2006). Two-phase flow processes with dynamic effects in porous media - parameter estimation and simulation. doi:http://dx.doi.org/10.18419/opus-253
18.Mokady, R. S., & Low, P. F. (1964). The Tension-Moisture Content Relationship Under Static and Dynamic Conditions. Soil Science Society of America Journal, 28(4), 583. doi:10.2136/sssaj1964.03615995002800040040x
19.Poulovassilis. (1974). The uniqueness of the moisture characters. Journal of Soil Science, 25(1), 27-33.
20.Richards, L. A. (1931). Capillary Conduction of Liquids through Porous Mediums. Physics, 1(5), 318-333. doi:10.1063/1.1745010
21.Sakaki, T., O′Carroll, D. M., & Illangasekare, T. H. (2010). Direct Quantification of Dynamic Effects in Capillary Pressure for Drainage-Wetting Cycles. Vadose Zone Journal, 9(2), 424-437. doi:10.2136/vzj2009.0105
22.Schelle, H., Heise, L., Janicke, K., & Durner, W. (2013). Water retention characteristics of soils over the whole moisture range: a comparison of laboratory methods. European Journal of Soil Science, 64(6), 814-821. doi:10.1111/ejss.12108
23.Selker, J., Leclerq, P., Parlange, J. Y., & Steenhuis, T. (1992). Fingered flow in two dimensions: 1. Measurement of matric potential. Water Resources Research, 28(9), 2513-2521. doi:10.1029/92WR00963
24.Šimůnek, J., van Genuchten, M.Th. and Šejna, M. (2013). The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media
25.Smiles, D. E., Vachaud, G., & Vauclin, M. (1971). A Test of the Uniqueness of the Soil Moisture Characteristic During Transient, Nonhysteretic Flow of Water in a Rigid Soil1. Soil Science Society of America Journal, 35(4), 534. doi:10.2136/sssaj1971.03615995003500040018x
26.Stauffer, F. (1978). Time dependence of the relations between capillary pressure, water content and conductivity during drainage of porous media.
27.Tafteh, A., & Sepaskhah, A. R. (2012). Application of HYDRUS-1D model for simulating water and nitrate leaching from continuous and alternate furrow irrigated rapeseed and maize fields. Agricultural Water Management, 113, 19-29. doi:10.1016/j.agwat.2012.06.011
28.Topp, G. C., Klute, A., & Peters, D. B. (1967). Comparison of Water Content-Pressure Head Data Obtained by Equilibrium, Steady-State, and Unsteady-State Methods. Soil Science Society of America Journal, 31(3), 312-314. doi:10.2136/sssaj1967.03615995003100030009x
29.Towner, G. D. (1980). THEORY OF TIME RESPONSE OF TENSIOMETERS. Journal of Soil Science, 31(4), 607-621. doi:10.1111/j.1365-2389.1980.tb02108.x
30.Towner, G. D. (1981). The response of tensiometers embedded in saturated soil peds of low hydraulic conductivity. Journal of Agricultural Engineering Research, 26(6), 541-549. doi:http://dx.doi.org/10.1016/0021-8634(81)90086-X
31.Vachaud, G., Vauclin, M., & Wakil, M. (1972). A Study of the Uniqueness of the Soil Moisture Characteristic During Desorption by Vertical Drainage1. Soil Science Society of America Journal, 36(3), 531-532. doi:10.2136/sssaj1972.03615995003600030044x
32.van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1. Soil Science Society of America Journal, 44(5), 892. doi:10.2136/sssaj1980.03615995004400050002x
33.Wildenschild, D., Hopmans, J. W., & Simunek, J. (2001). Flow rate dependence of soil hydraulic characteristics. Soil Science Society of America Journal, 65(1), 35-48. |