參考文獻 |
1. Araoka, D., Inoue, M., Suzuki, A., Yokoyama, Y., Edwards, R. L., Cheng, H., ... & Kawahata, H. (2010). Historic 1771 Meiwa tsunami confirmed by high‐resolution U/Th dating of massive Porites coral boulders at Ishigaki Island in the Ryukyus, Japan. Geochemistry, Geophysics, Geosystems, 11(6).
2. Born, M., & Wolf, E. (1999). Principles of Optics, seventh expanded edition. Cambridge, England.
3. Cochard, R., Ranamukhaarachchi, S. L., Shivakoti, G. P., Shipin, O. V., Edwards, P. J., & Seeland, K. T. (2008). The 2004 tsunami in Aceh and Southern Thailand: a review on coastal ecosystems, wave hazards and vulnerability. Perspectives in Plant Ecology, Evolution and Systematics, 10(1), 3-40.
4. Dean, R. G., & Dalrymple, R. A. (1991). Water wave mechanics for engineers and scientists (Vol. 2). World Scientific Publishing Co Inc.
5. Francis, P. (1993). Volcanoes. A planetary perspective. Volcanoes. A planetary perspective., by Francis, P.. Clarendon Press, Oxford (UK), 1993, 452 p., ISBN 0-19-854452-9, ISBN 0-19-854033-7 (paper)., 1.
6. Fresnel, A. (1816). Ann Chim et Phys.
7. Goto, K., Kawana, T., & Imamura, F. (2010). Historical and geological evidence of boulders deposited by tsunamis, southern Ryukyu Islands, Japan. Earth-Science Reviews, 102(1), 77-99.
8. Hanks, T. C. (1979). b values and ω− γ seismic source models: Implications for tectonic stress variations along active crustal fault zones and the estimation of high‐frequency strong ground motion. Journal of Geophysical Research: Solid Earth, 84(B5), 2235-2242.
9. Hisamatsu, A., Goto, K., & Imamura, F. (2014). Local paleo-tsunami size evaluation using numerical modeling for boulder transport at Ishigaki Island, Japan. Episodes, 37(4), 265-276.
10. Imamura, F., Goto, K., & Ohkubo, S. (2008). A numerical model for the transport of a boulder by tsunami. Journal of Geophysical Research: Oceans, 113(C1).
11. International Federation of Red Cross and Red Crescent Societies (1995).," World Disasters Report 2005". Third World Planning Review, 17(3), 357.
12. Kamewada, S. (2005). 八重山の明和大津波.
13. Kanamori, H. (1977). The energy release in great earthquakes. Journal of geophysical research, 82(20), 2981-2987.
14. Kato, Y. (1989). Yaeyama Seismic Tsunami (1771) in the Miyako Islands recorded in the newly-found archives “Otoiai-gaku,”. Bulletin of the College of Science, University of the Ryukyus, 47, 153-158.
15. Kawana, T. (2000). Field guidebook for tsunami disaster prevention. Research association for Tokai, To-nankai and Nankai Earthquake Tsunamis, Osaka, 25.
16. Kramers. H. A. (1957). “Quantum Mechanics”, publisher Dover, 1957, pp. 62 ISBN 978-0-486-66772-0.
17. Kubo, A., & Fukuyama, E. (2003). Stress field along the Ryukyu Arc and the Okinawa Trough inferred from moment tensors of shallow earthquakes. Earth and Planetary Science Letters, 210(1), 305-316.
18. Lay, T., Kanamori, H., Ammon, C. J., Nettles, M., Ward, S. N., Aster, R. C., ... & DeShon, H. R. (2005). The great Sumatra-Andaman earthquake of 26 december 2004. Science, 308(5725), 1127-1133.
19. Lee, W. H. K., Wu, F. T., & Wang, S. C. (1978). A catalog of instrumentally determined earthquakes in China (magnitude≧ 6) compiled from various sources. Bulletin of the Seismological Society of America, 68(2), 383-398.
20. Levy, J. K., & Gopalakrishnan, C. (2005). Promoting Disaster-resilient Communities: The Great Sumatra–Andaman Earthquake of 26 December 2004 and the Resulting Indian Ocean Tsunami. Water Resources, 21(4), 543-559.
21. Liu, P. L. –F., Woo, S. B., & Cho, Y. S. (1998). Computer programs for tsunami propagation and inundation. Cornell University.
22. Ma, K. F., & Lee, M. F. (1997). Simulation of historical tsunamis in the Taiwan region. Terrestrial, Atmospheric and Oceanic Sciences, 8(1), 13-30.
23. Miyazawa, K., Goto, K., & Imamura, F. (2012). Re-evaluation of the 1771 Meiwa Tsunami source model, southern Ryukyu Islands, Japan. In Submarine Mass Movements and Their Consequences (pp. 497-506). Springer Netherlands.
24. Mori, N., Takahashi, T., Yasuda, T., & Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and run‐up. Geophysical research letters, 38(7).
25. Nakamura, M. (2006). Source fault model of the 1771 Yaeyama tsunami, southern Ryukyu Islands, Japan, inferred from numerical simulation. pure and applied geophysics, 163(1), 41-54.
26. Nakamura, M. (2009). Fault model of the 1771 Yaeyama earthquake along the Ryukyu Trench estimated from the devastating tsunami. Geophysical Research Letters, 36(19).
27. Nakata, T., & Kawana, T. (1995). Historical and prehistorical large tsunamis in the southern Ryukyus, Japan. In Tsunami: Progress in prediction, disaster prevention and warning (pp. 211-221). Springer Netherlands.
28. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the seismological society of America, 75(4), 1135-1154.
29. Suzuki, A., Yokoyama, Y., Kan, H., Minoshima, K., Matsuzaki, H., Hamanaka, N., & Kawahata, H. (2008). Identification of 1771 Meiwa Tsunami deposits using a combination of radiocarbon dating and oxygen isotope microprofiling of emerged massive Porites boulders. Quaternary Geochronology, 3(3), 226-234.
30. USGS (2012). Ring of Fire, Earthquake Glossary.
31. Wang, X. (2009). User manual for COMCOT version 1.7 (first draft). Cornel University, 65.
32. Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., & Tappin, D. R. (2003). Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards And Earth System Science, 3(5), 391-402.
33. Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84(4), 974-1002.
34. Wu, T. R. (2012). Deterministic study on the potential large tsunami hazard in Taiwan. Journal of Earthquake and Tsunami, 6(03), 1250034.
35. Yen, Y. T., & Ma, K. F. (2011). Source-scaling relationship for M 4.6–8.9 earthquakes, specifically for earthquakes in the collision zone of Taiwan. Bulletin of the Seismological Society of America, 101(2), 464-481.
36. 山村武彥,「1771 明和の大津波跡 (現地調査)」,2010。
37. 中央地震工作小組辦公室,「中國地震目錄」,科學出版社,1971。
38. 日本國土地理院,「1771年八重山地震津波 (明和の大津波)」,1994。
39. 王郁如、馬國鳳,「環太平洋地震帶」,地質知識服務網地質百科,2014。
40. 吳珮萱,「由台灣北部的地質環境討論1867年基隆海嘯的可能性」,碩士論文,中國文化大學理學院地學研究所地質組,2016。
41. 吳祚任,「台灣自1661年起之11次台灣歷史海嘯紀錄」,2013。
42. 吳維燦,「1604 年福建泉州8級地震」,中國特大地震研究,北京,地震出版社,頁182-191,1988。
43. 李孟芬,「台灣地區地震海嘯之可能性研究」,碩士論文,國立中央大學地球物理研究所,1996。
44. 李宗祐、李金生,「罕見!金門一天兩震,無關川震」,中國時報,2008。
45. 李俊叡,「台灣海嘯速算系統建置暨 1867 年基隆海嘯事件之還原與分析」,碩士論文,國立中央大學水文與海洋科學研究所,2014。
46. 李昭興,「孕育中的龜山海底火山」,科學發展,5月,437期,2009。
47. 李珮瑜,「蘭嶼海嘯石與 1867 年基隆海嘯之動力分析」,水文與海洋科學研究所,碩士論文,2015。
48. 李善邦,「中國地震目錄」,中國科學院,地球物理研究所,1960。
49. 周學曾,「晉江縣誌」,卷之七十四,1830。
50. 牧野清,「八重山の明和大津波,城野印刷,1968。
51. 姜志禮,「重修洛陽橋記」碑,1609。
52. 馬國鳳、簡文峰、宋德濡,「台灣地區近地海嘯地震的危害性評估」,行政院國家科學委員會科學技術資料中心,CWB85-2E-19,1996。
53. 許樹坤,「台灣附近海域的海底山崩調查與分析(II) 」,行政院國家科學委員會專題研究計畫,2010。
54. 郭增建,馬宗晉,「中國特大地震研究」,第1卷,中國特大地震研究,地震出版社,1988。
55. 陳伯飛,「利用 W 波相逆推震源參數與單位海嘯建立南中國海海嘯預警系統」,財團法人國家實驗研究院科技政策研究與資訊中心,2011。
56. 陳泗東,「1604年與1607年泉州兩次強地震考述」,幸園筆耕錄,108-128,2003。
57. 程卓,「泉州府誌」,卷七十三,1763。
58. 黃昭,「1604 年泉州海外大地震及其海嘯影響分析」,地震,第 4 期,2006。
59. 廖玲琬,「臺灣東部海嘯潛勢評估」,碩士論文,國立中央大學地球物理研究所,2008。
60. 劉翠溶,「漢人拓墾與聚落之形成-臺灣環境變遷之起始」,中國環境史論文集,頁295-347,1995。
61. 慶世村恒任,「宮古史傳」,2008。
62. 蔡淑玲,「台灣閩南語地名的語言層次與文化層次」,台灣語言教育與研究,2003。
63. 鄭世楠,「台灣地區歷史地震資料之建置」,中央氣象局地震技術報告彙編,60 卷,432-433,2011。
64. 鄭世楠、王子賓,「台灣地區地震目錄的建置(II)」,中央氣象局地震測報中心計畫,2009。
65. 鄭世楠、葉永田,「台灣歷史災害地震對社會文化的衝擊」,921 震災與社會文化重建研討會,9月,台北,1-19,2001。
66. 謝毓壽,「閩粵海外的歷史地震活動」,地震學報,第4期 (505-516),1991。 |