博碩士論文 103230003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:18.227.209.101
姓名 葉思恩(Szu-En Yeh)  查詢紙本館藏   畢業系所 生物物理研究所
論文名稱 T+T−調控於鈣耦合模型中心臟交替脈現象之模擬研究
(Simulation studies of T +T− feedback control on cardiac alternans in Ca2+ coupled model)
相關論文
★ The Rheological Properties of Invasive Cancer Cells★ Case study of an extended Fitzhugh-Nagumo model with chemical synaptic coupling and application to C. elegans functional neural circuits
★ 二維非彈性顆粒子之簇集現象★ 螺旋狀高分子長鏈在拉力下之電腦模擬研究
★ 顆粒體複雜流動之研究★ 高分子在二元混合溶劑之二維蒙地卡羅模擬研究
★ 帶電高分子吸附在帶電的表面上之研究★ 自我纏繞繩節高分子之物理
★ 高分子鏈在強拉伸流場下之研究★ 利用雷射破壞方法研究神經網路的連結及同步發火的行為
★ 最佳化網路成長模型的理論研究★ 神經膠細胞在神經同步活動及鈣離子波傳遞中之角色
★ 高分子鏈在交流電場或流場下的行為★ 驟放式發火神經元的數值模擬
★ 黏菌之運動模型研究★ 離子通道電流漲落的非線性行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年心因性猝死是國人重要死亡因素之一,其中又以由心室顫動所導致之心因性猝死佔了多數。而心臟從正常的跳動到心室顫動之間的演進過程有其動力學之因素,且其動力學系統為一非線性系統。從心臟動力學的觀點認為,心室顫動是心臟的一種混沌且不協調之活動狀態。同時,心臟的動力學特性從正常演化至混沌間會經歷過倍週期分岔 (Bifurcation) 現象。故在倍週期發生後,我們可以在週期二之交替脈(period-2 alternans) 出現時進行控制進以抑制心室顫動的發生。為了解心臟動力學之變化,本研究使用了單細胞與一維纖維結構之 Shiferaw-Fox model(此為一心臟之鈣離子耦合模型) 以模擬心臟之動力學系統,同時引入了一非線性調控方式進行調控模擬。本研究發現這樣的週期二交替脈中可以分成不同階段,並且找到了在不同階段相應的控制方式。此外,研究中亦發現進行控制時能成功控制的臨界強度與心肌組織中被控制之細胞占纖維中之比例的倒數呈現線性關係。這些研究結果有助於未來決定適當之調控參數,進行有效調控,進而避免心因性猝死之發生。
摘要(英) Nowadays, sudden cardiac (SCD) death is one of top 10 causes of
death. Most of them, such as ventricular fibrillation (VF), have a dynamical origin. For example, Ventricular fibrillation has been described as
”chaotic asynchronous fractionated activity of the heart”. According to the
non-linear dynamics, that cardiac dynamic would undergo period doubling
alternans before getting into chaos. As a result, we could try to reduce the
alternans in order to avoid VF. We use single cell and 1-dimension fiber
Shiferaw-Fox model, with APD-calcium coupling, to simulate the dynamics
of heartbeat and the T
+T− feedback control to suppress cardiac alternans.
According to the result of our simulations, we found some relationships
among basic cycle length, control fraction and critical control strength,
and these findings could improve our control to avoid SCD.
關鍵字(中) ★ 心臟動力學
★ 非線性動力學
★ 非線性調控
★ 分岔
★ 交替脈
關鍵字(英) ★ Cardiac dynamics
★ nonlinear dynamics
★ feedback control
★ Bifurcation
★ Alternans
論文目次 㐀要 ix
Abstract xi
娴謝 xiii
目錄 xv
使用符號與定義 xxv
一、 䵺論 1
1.1 心臟結構 .................................................................. 3
1.2 離子通道、動作電位與心跳週期 .................................... 5
1.3 非線性動力學 ............................................................ 8
1.4 Poincaré Map ............................................................ 8
1.5 吸引子 ..................................................................... 9
1.6 分岔現象與交替脈 ...................................................... 10
1.6.1 Pitchfork bifurcation .......................................... 10
1.6.2 倍周期 (Period doubling)..................................... 12
1.6.3 APD 交替脈 (APD Alternans).............................. 13
1.7 吸引子共存 ............................................................... 14
二、 模型 17
2.1 單細胞 Shiferaw-Fox model (SF Model) ........................... 17
2.2 心肌纖維的 Shiferaw-Fox model (SF Model) ..................... 24
xv
ҕᒬ
2.3 T
+T− feedback control.................................................. 31
三、 T+T− 控制模擬結果 35
3.1 單細胞 ..................................................................... 35
3.1.1 τ = α = 500ms.................................................. 35
3.1.2 τ < α.............................................................. 41
3.2 一維纖維結構 ............................................................ 51
3.2.1 Y 字形分岔區域 ................................................ 51
3.2.2 複雜吸引子區域 ................................................ 63
3.2.3 音叉形分岔區域 ................................................ 67
3.2.4 臨界及極小值微擾項之線性關係 ........................... 77
四、 總結 81
4.1 結論 ........................................................................ 81
4.2 未來展望 .................................................................. 82
參考文獻 83
附錄 A 程式䡤 87
A.1 Matlab ..................................................................... 87
參考文獻 [1] “Physics of cardiac arrhythmogenesis,” Annual Review of Condensed Matter Physics,
vol. 4, no. 1, pp. 313–337, 2013. doi: 10.1146/annurev- conmatphys- 020911-
125112. [Online]. Available: http://dx.doi.org/10.1146/annurev-conmatphys-
020911-125112.
[2] Z. Qu, G. Hu, A. Garfinkel, and J. N. Weiss, “Nonlinear and stochastic dynamics in
the heart,” Physics Reports, Nonlinear and Stochastic Dynamics in the Heart, vol.
543, no. 2, pp. 61–162, Oct. 10, 2014, issn: 0370-1573. doi: 10.1016/j.physrep.
2014.05.002. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S037015731400204X (visited on 05/01/2017).
[3] D. J. Dosdall, V. G. Fast, and R. E. Ideker, “Mechanisms of defibrillation,” Annual
Review of Biomedical Engineering, vol. 12, pp. 233–258, Aug. 15, 2010, issn: 1545-
4274. doi: 10.1146/annurev-bioeng-070909-105305.
[4] O. College, Illustration from anatomy & physiology, connexions web site. http://
cnx.org/content/col11496/1.6/, jun 19, 2013. [Online]. Available: https://commons.
wikimedia.org/wiki/File:2024_Cardiac_Arrhythmias.jpg.
[5] E. O. Robles de Medina, R. Bernard, P. Coumel, A. N. Damato, C. Fisch, D.
Krikler, N. A. Mazur, F. L. Meijler, L. Mogensen, P. Moret, Z. Pisa, and H. J.
Wellens, “Definition of terms related to cardiac rhythm. WHO/ISFC task force,”
European Journal of Cardiology, vol. 8, no. 2, pp. 127–144, Sep. 1978, issn: 0301-
4711.
[6] T. Quail, “Chaotic dynamics in cardiac aggregates induced by potassium channel
block,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 22, no. 3,
p. 033 140, Sep. 1, 2012, issn: 1054-1500. doi: 10 . 1063 / 1 . 4748854. [Online].
Available: http://aip.scitation.org/doi/abs/10.1063/1.4748854.
[7] D.-M. Le, P.-Y. Lai, and C. K. Chan. (2012). Control by chaotic attractors: Reduction
of cardiac alternans by small perturbations, [Online]. Available: https://opentextbc.
ca/anatomyandphysiology/chapter/19-2-cardiac-muscle-and-electricalactivity/.
83
୍ԬЅᝏ
[8] P. S. Skardal and J. G. Restrepo, “Coexisting chaotic and multi-periodic dynamics
in a model of cardiac alternans,” Chaos: An Interdisciplinary Journal of Nonlinear
Science, vol. 24, no. 4, p. 043 126, Dec. 2014, issn: 1054-1500, 1089-7682. doi:
10.1063/1.4901728. arXiv: 1408.4993. [Online]. Available: http://arxiv.org/
abs/1408.4993.
[9] S. Luther, F. H. Fenton, B. G. Kornreich, A. Squires, P. Bittihn, D. Hornung, M.
Zabel, J. Flanders, A. Gladuli, L. Campoy, E. M. Cherry, G. Luther, G. Hasenfuss,
V. I. Krinsky, A. Pumir, R. F. G. Jr, and E. Bodenschatz, “Low-energy control of
electrical turbulence in the heart,” Nature, vol. 475, no. 7355, pp. 235–239, Jul. 14,
2011, issn: 0028-0836. doi: 10 . 1038 / nature10216. [Online]. Available: http :
//www.nature.com/nature/journal/v475/n7355/full/nature10216.html.
[10] F. Yapari, D. Deshpande, Y. Belhamadia, and S. Dubljevic, “Control of cardiac
alternans by mechanical and electrical feedback,” Physical Review E, vol. 90, no. 1,
p. 012 706, Jul. 25, 2014. doi: 10.1103/PhysRevE.90.012706. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevE.90.012706.
[11] (). Conduction system of the heart, Pinterest, [Online]. Available: https://www.
pinterest.com/mastersnowball/conduction-system-of-the-heart/.
[12] O. College, Illustration from anatomy & physiology, connexions web site. http://
cnx.org/content/col11496/1.6/, jun 19, 2013. [Online]. Available: https://commons.
wikimedia.org/wiki/File:2024_Cardiac_Arrhythmias.jpg.
[13] (). Muscular system module 6: Cardiac muscle tissue, [Online]. Available: http:
//archive.cnx.org/contents/8ff1e0a4-661b-4f24-88a2-372a2aee031a@1/
muscular-system-module-6-cardiac-muscle-tissue.
[14] Klabunde. (). CV physiology | sinoatrial node action potentials, [Online]. Available:
http://www.cvphysiology.com/Arrhythmias/A004.
[15] (). CV physiology | non-pacemaker action potentials, [Online]. Available: http:
//www.cvphysiology.com/Arrhythmias/A006.
[16] A. I. Abdelaziz. (). Ahmed ihab abdelaziz: Untersuchungen zur funktion der humanen atrialen essentiellen leichten myosinkette (ALC-1) in einem transgenen rattenmodell, [Online]. Available: http://edoc.hu-berlin.de/dissertationen/
abdelaziz-ahmed-ihab-2004-09-20/HTML/front.html#front.
[17] X. Zhao, “Indeterminacy of spatiotemporal cardiac alternans,” Physical review. E,
Statistical, nonlinear, and soft matter physics, vol. 78, no. 1, p. 011 902, Jul. 2008,
issn: 1539-3755. [Online]. Available: http : / / www . ncbi . nlm . nih . gov / pmc /
articles/PMC2562603/.
84
୍ԬЅᝏ
[18] C. Hirth, U. Borchard, and D. Hafner, “Effects of the calcium antagonist diltiazem
on action potentials, slow response and force of contraction in different cardiac
tissues,” Journal of Molecular and Cellular Cardiology, vol. 15, no. 12, pp. 799–
809, Dec. 1983, issn: 0022-2828. doi: 10.1016/0022- 2828(83)90342- 5. [Online]. Available: http : / / www . sciencedirect . com / science / article / pii /
0022282883903425.
[19] J. I. Goldhaber, L.-H. Xie, T. Duong, C. Motter, K. Khuu, and J. N. Weiss, “Action
potential duration restitution and alternans in rabbit ventricular myocytes: The key
role of intracellular calcium cycling,” Circulation Research, vol. 96, no. 4, pp. 459–
466, Mar. 4, 2005, issn: 1524-4571. doi: 10.1161/01.RES.0000156891.66893.83.
[20] S. H. Strogatz, Nonlinear dynamics and chaos: With applications to physics, biology,
chemistry, and engineering. Westview Press, Jul. 29, 2014, 533 pp., Google-BooksID: aMrSDQAAQBAJ, isbn: 978-0-8133-4910-7.
[21] Yapparina, 日本婆: ΉΡΙΰͷ a=3.2 ̯ͧΚ̯ⶋ⚛̩時系列, Nov. 30, 2014.
[Online]. Available: https://commons.wikimedia.org/wiki/File%3ALogistic_
map_cobweb_and_time_evolution_a%3D3.2.png.
[22] 許庭瑋 and T.-w. Hsu, “在外加振盪磁場中阻尼磁針的非線性動力學分析;Numerical
and theoretical analysis of the nonlinear dynamics of a damped compass under external oscillatory magnetic field,” thesis, 國立中央大學, Jan. 28, 2016. [Online].
Available: http://ir.lib.ncu.edu.tw/handle/987654321/69378 (visited on
02/22/2017).
[23] A. Petrie and X. Zhao, “Estimating eigenvalues of dynamical systems from time
series with applications to predicting cardiac alternans,” Proc. R. Soc. A, vol. 468,
no. 2147, pp. 3649–3666, Nov. 8, 2012, issn: 1364-5021, 1471-2946. doi: 10.1098/
rspa.2012.0098. [Online]. Available: http://rspa.royalsocietypublishing.
org/content/468/2147/3649 (visited on 03/02/2017).
[24] (). A magnetoelastic strange attractor - ScienceDirect, [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/0022460X79905200 (visited
on 05/01/2017).
[25] J. J. Fox, M. L. Riccio, F. Hua, E. Bodenschatz, and R. F. Gilmour, “Spatiotemporal
transition to conduction block in canine ventricle,” Circulation Research, vol. 90, no.
3, pp. 289–296, Feb. 22, 2002, issn: 0009-7330, 1524-4571. doi: 10.1161/hh0302.
104723. [Online]. Available: http://circres.ahajournals.org/content/90/3/
289.
[26] Y. Shiferaw, M. A. Watanabe, A. Garfinkel, J. N. Weiss, and A. Karma, “Model of
intracellular calcium cycling in ventricular myocytes,” Biophysical Journal, vol. 85,
no. 6, pp. 3666–3686, Dec. 2003, issn: 0006-3495. doi: 10.1016/S0006-3495(03)
74784-5. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0006349503747845.
85
୍ԬЅᝏ
[27] “Electrical alternans and spiral wave breakup in cardiac tissue,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 4, no. 3, pp. 461–472, Sep. 1,
1994, issn: 1054-1500. doi: 10.1063/1.166024. [Online]. Available: http://aip.
scitation.org/doi/abs/10.1063/1.166024.
[28] S. Sridhar, D.-M. Le, Y.-C. Mi, S. Sinha, P.-Y. Lai, and C. K. Chan, “Suppression
of cardiac alternans by alternating-period-feedback stimulations,” Physical Review.
E, Statistical, Nonlinear, and Soft Matter Physics, vol. 87, no. 4, p. 042 712, Apr.
2013, issn: 1550-2376. doi: 10.1103/PhysRevE.87.042712.
[29] 李度門 and L. D.M., “Predicting Self-terminating Ventricular Fibrillation by Bivariate Data Analysis and Controlling Cardiac Alternans by Chaotic Attractors;
Predicting Self-terminating Ventricular Fibrillation by Bivariate Data Analysis
and Controlling Cardiac Alternans by Chaotic Attractors,” thesis, 國立中央大
學, Jan. 20, 2014. [Online]. Available: http://ir.lib.ncu.edu.tw/handle/
987654321/63487.
[30] Y.-T. Lin, “非線性調控對心臟分岔現象的影響, Nonlinear control on heart bifurcation,” http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=103230006, Aug. 30,
2016. [Online]. Available: http://ir.lib.ncu.edu.tw:88/thesis/view_etd.
asp?URN=103230006.
指導教授 黎璧賢、陳志強(Pik-Yin Lai Chi-Keung Chan) 審核日期 2017-5-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明