參考文獻 |
1. Kirschner, C.M. and A.B. Brennan, Bio-Inspired Antifouling Strategies. Annual Review of Materials Research, 2012. 42(1): p. 211-229.
2. Bazaka, K., et al., Anti-bacterial surfaces: natural agents, mechanisms of action, and plasma surface modification. RSC Adv., 2015. 5(60): p. 48739-48759.
3. Satheesh, S., M.A. Ba-akdah, and A.A. Al-Sofyani, Natural antifouling compound production by microbes associated with marine macroorganisms — A review. Electronic Journal of Biotechnology, 2016. 21: p. 26-35.
4. Lutchmiah, K., et al., Forward osmosis for application in wastewater treatment: a review. Water Res, 2014. 58: p. 179-97.
5. Hoiby, N., et al., The clinical impact of bacterial biofilms. Int J Oral Sci, 2011. 3(2): p. 55-65.
6. Costerton, J.W., Bacterial Biofilms: A Common Cause of Persistent Infections. Science, 1999. 284(5418): p. 1318-1322.
7. Curtis, J. and A. Colas, Medical Applications of Silicones. Applications of Biomaterials, 2013: p. 1106-1116.
8. Zimlichman, E., et al., Health care-associated infections: a meta-analysis of costs and financial impact on the US health care system. JAMA Intern Med, 2013. 173(22): p. 2039-46.
9. Curtis, J. and A. Colas, MEDICAL APPLICATIONS.
10. Bazaka, K., R.J. Crawford, and E.P. Ivanova, Do bacteria differentiate between degrees of nanoscale surface roughness? Biotechnol J, 2011. 6(9): p. 1103-14.
11. Zhao, J., et al., Improved biocompatibility and antifouling property of polypropylene non-woven fabric membrane by surface grafting zwitterionic polymer. Journal of Membrane Science, 2011. 369(1-2): p. 5-12.
12. Jiang, S. and Z. Cao, Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater, 2010. 22(9): p. 920-32.
13. Rossi, N.A., et al., In vitro chelating, cytotoxicity, and blood compatibility of degradable poly(ethylene glycol)-based macromolecular iron chelators. Biomaterials, 2009. 30(4): p. 638-48.
14. H. Ma, et al., Non-Fouling Oligo(ethylene glycol)- Functionalized Polymer Brushes Synthesized by Surface-Initiated Atom Transfer Radical Polymerization. Adv. Mater., 2004: p. 16, 338–341
15. Su, Y.-L., et al., Preparation of antifouling ultrafiltration membranes with poly(ethylene glycol)-graft-polyacrylonitrile copolymers. Journal of Membrane Science, 2009. 329(1-2): p. 246-252.
16. Sin, M.-C., S.-H. Chen, and Y. Chang, Hemocompatibility of zwitterionic interfaces and membranes. Polymer Journal, 2014. 46(8): p. 436-443.
17. Wayne R. Gombotz, W.G., Thomas A . Horbett, and Allan S. Hoffman
18. Emanuele Ostuni, R.G.C., R. Erik Holmlin, Shuichi Takayama, and and G.M. Whitesides, A Survey of Structure-Property Relationships of Surfaces
that Resist the Adsorption of Protein. Langmuir 2001: p. 17, 5605-5620
19. Yan-Yeung Luk, M.K., and Milan Mrksich, Self-Assembled Monolayers of Alkanethiolates Presenting
Mannitol Groups Are Inert to Protein Adsorption and Cell
Attachment. Langmuir, 2000: p. 16, 9604-9608.
20. Todd Talarico, A.S., and Chris Privalle, Autoxidation of Pyridoxalated Hemoglobin Polyoxyethylene Conjugate. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998: p. 250, 354–358 (1998).
21. Zwaal, R.F.A.S., A. J. , Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. BLOOD, 1997: p. VOL 89, NO 4
22. Xuan, F. and J. Liu, Preparation, characterization and application of zwitterionic polymers and membranes: current developments and perspective. Polymer International, 2009. 58(12): p. 1350-1361.
23. Long, S., Controlled biological response on blends of a phosphorylcholine-based copolymer with poly(butyl methacrylate). Biomaterials, 2003. 24(23): p. 4115-4121.
24. He, M., et al., Zwitterionic materials for antifouling membrane surface construction. Acta Biomater, 2016. 40: p. 142-52.
25. Kadoma, Y., et al., Synthesis and hemolysis test of polymer containing phosphorylcholine groups. Kobunshi Ronbunshu, 1978. 35(7): p. 423-427.
26. Ishihara, K., T. Ueda, and N. Nakabayashi, Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym J, 1990. 22(5): p. 355-360.
27. Wei Feng , S.Z.K.I., and John L. Brash Adsorption of Fibrinogen and Lysozyme on Silicon Grafted with Poly(2-methacryloyloxyethyl Phosphorylcholine) via Surface-Initiated Atom Transfer Radical Polymerization. Langmuir, 2005: p. 21 (13), pp 5980–5987.
28. Nakabayashi, N. and D. Williams, Preparation of non-thrombogenic materials using 2-methacryloyloxyethyl phosphorylcholine. Biomaterials, 2003. 24(13): p. 2431-2435.
29. Schulz, D., et al., Phase behaviour and solution properties of sulphobetaine polymers. Polymer, 1986. 27(11): p. 1734-1742.
30. Chen, L., et al., Effects of polyelectrolyte complexation on the UCST of zwitterionic polymer. Polymer, 2000. 41(1): p. 141-147.
31. Shih, Y.J. and Y. Chang, Tunable blood compatibility of polysulfobetaine from controllable molecular-weight dependence of zwitterionic nonfouling nature in aqueous solution. Langmuir, 2010. 26(22): p. 17286-94.
32. Zhang, Z., et al., Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir, 2006. 22(24): p. 10072-10077.
33. Chang, Y., et al., Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir, 2006. 22(5): p. 2222-2226.
34. Zhang, Z., et al., Zwitterionic hydrogels: an in vivo implantation study. J Biomater Sci Polym Ed, 2009. 20(13): p. 1845-59.
35. Lee, W.-F. and C.-C. Tsai, Synthesis and solubility of the poly (sulfobetaine) s and the corresponding cationic polymers: 1. Synthesis and characterization of sulfobetaines and the corresponding cationic monomers by nuclear magnetic resonance spectra. Polymer, 1994. 35(10): p. 2210-2217.
36. Ning, J., et al., Characteristics of zwitterionic sulfobetaine acrylamide polymer and the hydrogels prepared by free-radical polymerization and effects of physical and chemical crosslinks on the UCST. Reactive and Functional Polymers, 2013. 73(7): p. 969-978.
37. Sun, J., et al., Conjugation with betaine: a facile and effective approach to significant improvement of gene delivery properties of PEI. Biomacromolecules, 2013. 14(3): p. 728-36.
38. Kane, R.S., P. Deschatelets, and G.M. Whitesides, Kosmotropes form the basis of protein-resistant surfaces. Langmuir, 2003. 19(6): p. 2388-2391.
39. Nyyssölä, A., Pathways of glycine betaine synthesis in two extremely halophilic bacteria, Actinopolyspora halophila and Ectothiorhodospira halochloris. 2001: Helsinki University of Technology.
40. Jon Ladd, Z.Z., Shengfu Chen, Jason C. Hower, and Shaoyi Jiang, Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules., 2008: p. 9(5):1357-61.
41. Hana Vaisocherová, W.Y., Zheng Zhang, Zhiqiang Cao, Gang Cheng, Marek Piliarik, Jiří Homola and Shaoyi Jiang, Ultralow Fouling and Functionalizable Surface Chemistry Based on a Zwitterionic Polymer Enabling Sensitive and Specific Protein Detection in Undiluted Blood Plasma. Anal. Chem.,, 2008: p. 80 (20), pp 7894–V 7901.
42. Zheng Zhang, S.C., and Shaoyi Jiang, Dual-Functional Biomimetic Materials: Nonfouling
Poly(carboxybetaine) with Active Functional Groups for Protein
Immobilization. Biomacromolecules, 2006: p. 7, 3311-3315
43. Milner, S., Polymer brushes. Science, 1991. 251(4996): p. 905-914.
44. Halperin, A., M. Tirrell, and T. Lodge, Tethered chains in polymer microstructures, in Macromolecules: Synthesis, Order and Advanced Properties. 1992, Springer. p. 31-71.
45. Minko, S., Grafting on solid surfaces:“Grafting to” and “grafting from” methods, in Polymer surfaces and interfaces. 2008, Springer. p. 215-234.
46. Van der Waarden, M., Stabilization of carbon-black dispersions in hydrocarbons. Journal of Colloid Science, 1950. 5(4): p. 317-325.
47. Van der Waarden, M., Adsorption of aromatic hydrocarbons in nonaromatic media on carbon black. Journal of Colloid Science, 1951. 6(5): p. 443-449.
48. Mackor, E. and J. Van der Waals, The statistics of the adsorption of rod-shaped molecules in connection with the stability of certain colloidal dispersions. Journal of Colloid Science, 1952. 7(5): p. 535-550.
49. Clayfield, E. and E. Lumb, A theoretical approach to polymeric dispersant action II. Calculation of the dimensions of terminally adsorbed macromolecules. Journal of Colloid and Interface Science, 1966. 22(3): p. 285-293.
50. Yang, Z., J.A. Galloway, and H. Yu, Protein interactions with poly (ethylene glycol) self-assembled monolayers on glass substrates: diffusion and adsorption. Langmuir, 1999. 15(24): p. 8405-8411.
51. Bozukova, D., et al., Improved performances of intraocular lenses by poly (ethylene glycol) chemical coatings. Biomacromolecules, 2007. 8(8): p. 2379-2387.
52. Ferreira, P., et al., Development of a biodegradable bioadhesive containing urethane groups. Journal of Materials Science: Materials in Medicine, 2008. 19(1): p. 111-120.
53. Raynor, J.E., et al., Polymer brushes and self-assembled monolayers: versatile platforms to control cell adhesion to biomaterials (Review). Biointerphases, 2009. 4(2): p. FA3-FA16.
54. Nuzzo, R.G. and D.L. Allara, Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society, 1983. 105(13): p. 4481-4483.
55. Love, J.C., et al., Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical reviews, 2005. 105(4): p. 1103-1170.
56. Ulman, A., Formation and structure of self-assembled monolayers. Chemical reviews, 1996. 96(4): p. 1533-1554.
57. Allara, D.L. and R.G. Nuzzo, Spontaneously organized molecular assemblies. 1. Formation, dynamics, and physical properties of n-alkanoic acids adsorbed from solution on an oxidized aluminum surface. Langmuir, 1985. 1(1): p. 45-52.
58. Ye, Q., F. Zhou, and W. Liu, Bioinspired catecholic chemistry for surface modification. Chem Soc Rev, 2011. 40(7): p. 4244-58.
59. Hayase, S., et al., Syntheses of Base-Soluble Si Polymers and Their Application to Resists. 1989, ACS Publications.
60. Waite, J.H., Adhesion a la moule. Integrative and comparative biology, 2002. 42(6): p. 1172-1180.
61. Silverman, H.G. and F.F. Roberto, Understanding marine mussel adhesion. Marine Biotechnology, 2007. 9(6): p. 661-681.
62. Lin, Q., et al., Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proceedings of the National Academy of Sciences, 2007. 104(10): p. 3782-3786.
63. Murphy, J.L., et al., Adhesive performance of biomimetic adhesive-coated biologic scaffolds. Biomacromolecules, 2010. 11(11): p. 2976-2984.
64. Malisova, B., et al., Poly (ethylene glycol) adlayers immobilized to metal oxide substrates through catechol derivatives: influence of assembly conditions on formation and stability. Langmuir, 2010. 26(6): p. 4018-4026.
65. Sever, M.J., et al., Metal‐mediated cross‐linking in the generation of a marine‐mussel adhesive. Angewandte Chemie, 2004. 116(4): p. 454-456.
66. Damier, P., et al., The substantia nigra of the human brain. Brain, 1999. 122(8): p. 1421-1436.
67. Dawson, T.M. and V.L. Dawson, Molecular pathways of neurodegeneration in Parkinson′s disease. Science, 2003. 302(5646): p. 819-822.
68. Lee, H., Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 2007: p. 426–430.
69. Li, G., et al., Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials, 2008. 29(35): p. 4592-4597.
70. Wang, K. and Y. Luo, Defined surface immobilization of glycosaminoglycan molecules for probing and modulation of cell-material interactions. Biomacromolecules, 2013. 14(7): p. 2373-82.
71. Li, H., et al., Use of surface plasmon resonance to investigate lateral wall deposition kinetics and properties of polydopamine films. Biosens Bioelectron, 2013. 41: p. 809-14.
72. Yu, F., et al., Experimental and theoretical analysis of polymerization reaction process on the polydopamine membranes and its corrosion protection properties for 304 Stainless Steel. Journal of Molecular Structure, 2010. 982(1-3): p. 152-161.
73. Wei, Q., et al., Oxidant-induced dopamine polymerization for multifunctional coatings. Polymer Chemistry, 2010. 1(9): p. 1430.
74. Łuczak, T., Preparation and characterization of the dopamine film electrochemically deposited on a gold template and its applications for dopamine sensing in aqueous solution. Electrochimica Acta, 2008. 53(19): p. 5725-5731.
75. Dreyer, D.R., et al., Elucidating the structure of poly(dopamine). Langmuir, 2012. 28(15): p. 6428-35.
76. Hong, S., et al., Non-Covalent Self-Assembly and Covalent Polymerization Co-Contribute to Polydopamine Formation. Advanced Functional Materials, 2012. 22(22): p. 4711-4717.
77. Faure, E., et al., Catechols as versatile platforms in polymer chemistry. Progress in Polymer Science, 2013. 38(1): p. 236-270.
78. Waite, J.H., Surface chemistry: mussel power. Nature materials, 2008. 7(1): p. 8-9.
79. Lee, H., et al., Catechol-grafted poly(ethylene glycol) for PEGylation on versatile substrates. Langmuir, 2010. 26(6): p. 3790-3.
80. Yang, S.H., et al., Mussel-inspired encapsulation and functionalization of individual yeast cells. J Am Chem Soc, 2011. 133(9): p. 2795-7.
81. Lee, Y., et al., Thermo-sensitive, injectable, and tissue adhesive sol–gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction. Soft Matter, 2010. 6(5): p. 977.
82. Burzio, L.A. and J.H. Waite, Cross-linking in adhesive quinoproteins: studies with model decapeptides. Biochemistry, 2000. 39(36): p. 11147-11153.
83. Ju, K.Y., et al., Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules, 2011. 12(3): p. 625-32.
84. Guo, L., et al., A mussel-inspired polydopamine coating as a versatile platform for the in situ synthesis of graphene-based nanocomposites. Nanoscale, 2012. 4(19): p. 5864-7.
85. Xu, L.Q., et al., Dopamine-Induced Reduction and Functionalization of Graphene Oxide Nanosheets. Macromolecules, 2010. 43(20): p. 8336-8339.
86. Coombs, T.L. and P.J. Keller, Mytilus byssal threads as an environmental marker for metals. Aquatic Toxicology, 1981. 1(5-6): p. 291-300.
87. Holten-Andersen, N., et al., pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proceedings of the National Academy of Sciences, 2011. 108(7): p. 2651-2655.
88. Westwood, G., T.N. Horton, and J.J. Wilker, Simplified polymer mimics of cross-linking adhesive proteins. Macromolecules, 2007. 40(11): p. 3960-3964.
89. Stewart, P.S. and J. William Costerton, Antibiotic resistance of bacteria in biofilms. The Lancet, 2001. 358(9276): p. 135-138.
90. Wyszogrodzka, G., et al., Metal-organic frameworks: mechanisms of antibacterial action and potential applications. Drug Discov Today, 2016. 21(6): p. 1009-18.
91. Dizaj, S.M., et al., Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C Mater Biol Appl, 2014. 44: p. 278-84.
92. Allahverdiyev, A.M., et al, Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future microbiology 2011: p. 6.8: 933-940.
93. Ranu, B.C. and S. Banerjee, Significant rate acceleration of the aza-Michael reaction in water. Tetrahedron Letters, 2007. 48(1): p. 141-143.
94. Liu, C.Y. and C.J. Huang, Functionalization of Polydopamine via the Aza-Michael Reaction for Antimicrobial Interfaces. Langmuir, 2016. 32(19): p. 5019-28.
95. Chao Zhang, Y.O., Wen-Xi Lei, Ling-Shu Wan, Jian Ji, and Zhi-Kang Xu, CuSO4/H2O2-Induced Rapid Deposition of Polydopamine Coatings
with High Uniformity and Enhanced Stability. Angew. Chem. Int. Ed., 2016: p. 55, 1 – 5
96. Sileika, T.S., et al., Antibacterial performance of polydopamine-modified polymer surfaces containing passive and active components. ACS Appl Mater Interfaces, 2011. 3(12): p. 4602-10.
97. Yeroslavsky, G., et al., Sonochemically produced polydopamine nanocapsules with selective antimicrobial activity. Chem Commun (Camb), 2013. 49(51): p. 5721-3.
98. Liu, Z., et al., Surface-independent one-pot chelation of copper ions onto filtration membranes to provide antibacterial properties. Chem Commun (Camb), 2016. 52(82): p. 12245-12248.
99. Du, X., et al., UV-triggered dopamine polymerization: control of polymerization, surface coating, and photopatterning. Adv Mater, 2014. 26(47): p. 8029-33.
100. Luo, Y., et al., Mechanistic study of oscillations and bistability in the copper (II)-catalyzed reaction between hydrogen peroxide and potassium thiocyanate. Journal of the American Chemical Society, 1989. 111(13): p. 4541-4548.
101. Kang, S.M., et al., Simultaneous Reduction and Surface Functionalization of Graphene Oxide by Mussel-Inspired Chemistry. Advanced Functional Materials, 2011. 21(1): p. 108-112.
102. Ball, V., et al., Deposition Mechanism and Properties of Thin Polydopamine Films for High Added Value Applications in Surface Science at the Nanoscale. BioNanoScience, 2011. 2(1): p. 16-34.
103. Andjelkovic, M., et al., Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chemistry, 2006. 98(1): p. 23-31.
104. Dalibor, T., et al., Deep defect centers in silicon carbide monitored with deep level transient spectroscopy. physica status solidi (a), 1997. 162(1): p. 199-225.
105. Zangmeister, R.A., T.A. Morris, and M.J. Tarlov, Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir, 2013. 29(27): p. 8619-28.
106. Liu, P. and E.J. Hensen, Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J Am Chem Soc, 2013. 135(38): p. 14032-5.
107. Halliwell, B. and J. Gutteridge, Oxygen toxicity, oxygen radicals, transition metals and disease. Biochemical journal, 1984. 219(1): p. 1.
108. Simpson, J.A., et al., Free-radical generation by copper ions and hydrogen peroxide. Stimulation by Hepes buffer. Biochemical Journal, 1988. 254(2): p. 519-523.
109. Santo, C.E., P.V. Morais, and G. Grass, Isolation and characterization of bacteria resistant to metallic copper surfaces. Appl Environ Microbiol, 2010. 76(5): p. 1341-8.
110. Lemire, J.A., J.J. Harrison, and R.J. Turner, Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology, 2013. 11(6): p. 371-384.
111. Zhao, D., et al., Antifouling property of micro-arc oxidation coating incorporating Cu2O nanoparticles on Ti6Al4V. Surface Engineering, 2017: p. 1-7.
112. Dalsin, J.L., et al., Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG− DOPA. Langmuir, 2005. 21(2): p. 640-646.
113. Nicolle, L.E., Urinary catheter-associated infections. Infectious disease clinics of North America, 2012. 26(1): p. 13-27.
114. Saint, S. and C.E. Chenoweth, Biofilms and catheter-associated urinary tract infections. Infectious disease clinics of North America, 2003. 17(2): p. 411-432.
115. Arciola, C.R., L. Baldassarri, and L. Montanaro, In catheter infections by Staphylococcus epidermidis the intercellular adhesion (ica) locus is a molecular marker of the virulent slime-producing strains. J Biomed Mater Res, 2002. 59(3): p. 557-62.
116. Götz, F., Staphylococcus and biofilms. Molecular microbiology, 2002. 43(6): p. 1367-1378. |