博碩士論文 104827013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.220.13.15
姓名 范玉珍(Yu-Jhen Fan)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 透過貽貝啟發快速沉積的複合材料與結合兩性離子修飾方式發展具有抗菌及抗汙功能之通用表面塗層研究
(Development of antimicrobial and antifouling universal coating via rapid deposition of composite mussel-inspired film and post-conjugation of zwitterionic moiety)
相關論文
★ 可功能化抗沾黏性雙離子自組裝單層膜於生物感測器之應用★ 雙離子胺基酸吸附劑在血液中重金屬 吸附之應用
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 新型兩性磷脂類高分子聚合物與其自組裝奈米結構
★ 聚電解質和多價植酸之間向抗菌強韌水凝膠的離子絡合作用★ 磺基甜菜鹼基自組裝單分子層的形成、穩定性和抗污染性的比較研究
★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane
★ 開發可生物降解的完全磷酸膽鹼水凝膠★ Development of Functional Biointerface by Mixed Oligomeric Silatranes
★ Biodegradable and pH-Responsive Nanoparticles for the Triggered Release of Antibiotics to Infected Wounds★ In situ gelation using amine-containing copolymer and dialkyne crosslinker via amino-yne click chemistry
★ Disulfide-based cross-linkers for functional polymeric networks★ 建立雙離子高分子修飾蛋白質技術與分析
★ DEVELOPMENT AND APPLICATIONS OF CATECHOL-FUNCTIONALIZED ZWITTERIONIC POLYMER★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 生物汙染是蛋白質、細胞或細菌等非特異性吸附於表面上,進而而形成血栓和生物膜。本研究提出一種通用基材表面修飾方式,使表面同時具有抵抗非特異性吸附,及抗菌的功能。本研究利用CuSO4及H2O2加速多巴胺的聚合與沉積速率,使表面於短時間內形成聚多巴胺層,且可同時螯合溶液中的銅離子(Cu2+)於表面上,並藉由銅離子釋放達到殺菌效果。形成的pDA功能薄膜後,再藉由aza-Michael addition反應方式接枝雙離子材料丙烯醯胺磺基甜菜鹼 (sulfobetaine acrylamide,SBAA),形成具有超親水之抗非特異性貼附之生物界面。利用接觸角測角儀 (contact angle) 進行表面鑑定,在接枝SBAA後的條件下,表面水接觸角約為5度,具有良好的親水性質。在X射線光電子能譜儀 (x-ray photoelectron spectroscopy)顯示,修飾後的表面上,具有銅離子及SBAA的元素組態。而於細菌貼附實驗測試,經SBAA修飾後,可抵抗約90%、95%的大腸桿菌(E-coli)及表皮葡萄球菌(S.epidermidis)之貼附,且其中80%為死菌。最後將材料修飾於尿導管表面上,並由此證明,藉由銅離子的釋放達到抗菌的效果,且修飾後的表面具有良好抗細菌貼附特性。本研究開發無表面選擇之生物啟發抗菌塗層,不但可抵抗細菌的非特異性貼附(antifouling),更利用銅離子作為殺菌劑,成為雙重功能(antifouling與antimicrobial)之萬用生物界面塗層,期待開發多功能生物界面且應用於醫療器材表面塗層,以提升其生物相容性與使用安全性。
摘要(英) The formation of bacterial biofilms on indwelling medical devices generally causes high risks for adverse complications such as catheter-associated urinary tract infections. In this study, we report a simple, rapid approach to imparting durable antibacterial properties to various surfaces. Initially, we use CuSO4/H2O2 to accelerate the polymerization of dopamine and the deposition rate of polydopamine. The pDA-assisted immobilization of copper ions enables the surfaces to incorporate antimicrobial agents for adsorbed and planktonic bacteria. Then, the fouling properties were achieved by grafting zwitterionic sulfobetaine acrylamide (SBAA) onto the pDA films via the aza-Michael addition. The surface chemical compositions upon pDA modification and subsequent conjugation were monitored with X-ray photoelectron spectroscopy (XPS) and water contact angle measurements. Antifouling properties of coatings were challenged by Escherichia coli and Staphylococcus epidermidis. The results show that pDA coatings grafted with SBAA exhibited superhydrophilicity and excellent fouling resistance. In addition, copper ions exhibit excellent antibacterial activity. The composite coatings allowed reduction of adsorption of Escherichia coli and S.epidermidis by 90% and 95%, respectively, while appearing up to 80% of dead bacteria upon the release of copper ions as measured by inductively coupled plasma mass spectrometry. Moreover, the composite coatings have been applied on the silicone-based urinary catheters to avoid the growth of bacteria and infection. Consequently, we have presented a facile and universal approach to modify surfaces and accordingly providing antibacterial properties. This strategy provides a useful route to mitigating the long-term biofouling of various surfaces.
關鍵字(中) ★ 兩性離子
★ 多巴胺
★ 金屬離子
★ 抗非特異性吸附
★ 抗菌
關鍵字(英) ★ zwitterionic material
★ dopamine
★ non-specific adsorption
★ antimicrobials
論文目次 摘要 V
ABSTRACT VI
謝誌 VII
目錄 VIII
圖目錄 XI
表目錄 XV
簡寫對照表 XVI
第一章 文獻回顧 1
1-1生物汙染 1
1-2生物膜形成機制 2
1-3醫療器材之生物汙染 3
1-4 抗生物汙染之生物塗層 4
1-4-1聚乙二醇材料 4
1-4-2雙離子材料 5
1-4-2-1 Phosphatidylcholine (PC)類雙離子材料 6
1-4-2-2 Sulfobetaine(SB)類雙離子材料 8
1-4-2-3 Carboxybetaine(CB)類雙離子材料 9
1-5表面修飾技術 10
1-5-1 高分子刷 10
1-5-2 自組裝單層膜 12
1-6 生物啟發之仿生材料 16
1-6-1貽貝蛋白 16
1-6-2多巴胺分子 17
1-6-3多巴胺分子的結構特性 18
1-6-4聚多巴胺的製備及形成機制 18
1-6-5聚多巴胺的表面功能化接枝及應用 22
1-6-6表面接枝胺基、硫醇分子 22
1-6-7 聚多巴胺與金屬離子之螯合 24
1-7抗微生物表面塗層 25
第二章研究目的 26
第三章 實驗藥品、設備及實驗方法 28
3-1實驗藥品 28
3-2實驗設備 29
3-3實驗方法 30
3-3-1實驗架構圖 30
3-3-2實驗流程圖 31
3-3-3利用CuSO4/H2O2 觸發聚多巴胺於表面之修飾 31
3-3-4丙烯醯胺磺基甜菜鹼(SBAA)接枝方法 31
3-3-5接觸角測量(Contact angle) 32
3-3-6橢圓偏光儀(Ellipsometry) 32
3-3-7紫外-可見分光光度計(UV-Vis) 32
3-3-8高解析電子能譜儀(XPS)分析 32
3-3-9原子力顯微镜(AFM)分析: 33
3-3-10感應偶和電漿質譜儀 (ICP-MS) 33
3-3-11細菌貼附測量 33
3-3-12尿導管之抗菌測試 34
第四章 實驗結果與討論 35
4-1表面元素組態及物理性質鑑定 35
4-1-1薄膜水接觸角測試 35
4-1-2 薄膜厚度測試 36
4-1-3 薄膜可見光紫外光分光光譜儀測量 37
4-1-4 XPS元素組成與薄膜之化學狀態 38
4-1-5薄膜原子力顯微镜分析 44
4-2抗汙及抗菌特性之鑑定 45
4-2-1銅離子釋放測試 45
4-2-2 活菌與死菌於表面之測試 46
4-3醫療器材實施 49
4-3-1通用塗層水接觸角測試 49
4-3-2通用塗層抗沾黏測試 51
4-3-3尿導管表面塗層之修飾 55
結論與未來展望 57
參考文獻 58
參考文獻

1. Kirschner, C.M. and A.B. Brennan, Bio-Inspired Antifouling Strategies. Annual Review of Materials Research, 2012. 42(1): p. 211-229.
2. Bazaka, K., et al., Anti-bacterial surfaces: natural agents, mechanisms of action, and plasma surface modification. RSC Adv., 2015. 5(60): p. 48739-48759.
3. Satheesh, S., M.A. Ba-akdah, and A.A. Al-Sofyani, Natural antifouling compound production by microbes associated with marine macroorganisms — A review. Electronic Journal of Biotechnology, 2016. 21: p. 26-35.
4. Lutchmiah, K., et al., Forward osmosis for application in wastewater treatment: a review. Water Res, 2014. 58: p. 179-97.
5. Hoiby, N., et al., The clinical impact of bacterial biofilms. Int J Oral Sci, 2011. 3(2): p. 55-65.
6. Costerton, J.W., Bacterial Biofilms: A Common Cause of Persistent Infections. Science, 1999. 284(5418): p. 1318-1322.
7. Curtis, J. and A. Colas, Medical Applications of Silicones. Applications of Biomaterials, 2013: p. 1106-1116.
8. Zimlichman, E., et al., Health care-associated infections: a meta-analysis of costs and financial impact on the US health care system. JAMA Intern Med, 2013. 173(22): p. 2039-46.
9. Curtis, J. and A. Colas, MEDICAL APPLICATIONS.
10. Bazaka, K., R.J. Crawford, and E.P. Ivanova, Do bacteria differentiate between degrees of nanoscale surface roughness? Biotechnol J, 2011. 6(9): p. 1103-14.
11. Zhao, J., et al., Improved biocompatibility and antifouling property of polypropylene non-woven fabric membrane by surface grafting zwitterionic polymer. Journal of Membrane Science, 2011. 369(1-2): p. 5-12.
12. Jiang, S. and Z. Cao, Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater, 2010. 22(9): p. 920-32.
13. Rossi, N.A., et al., In vitro chelating, cytotoxicity, and blood compatibility of degradable poly(ethylene glycol)-based macromolecular iron chelators. Biomaterials, 2009. 30(4): p. 638-48.
14. H. Ma, et al., Non-Fouling Oligo(ethylene glycol)- Functionalized Polymer Brushes Synthesized by Surface-Initiated Atom Transfer Radical Polymerization. Adv. Mater., 2004: p. 16, 338–341
15. Su, Y.-L., et al., Preparation of antifouling ultrafiltration membranes with poly(ethylene glycol)-graft-polyacrylonitrile copolymers. Journal of Membrane Science, 2009. 329(1-2): p. 246-252.
16. Sin, M.-C., S.-H. Chen, and Y. Chang, Hemocompatibility of zwitterionic interfaces and membranes. Polymer Journal, 2014. 46(8): p. 436-443.
17. Wayne R. Gombotz, W.G., Thomas A . Horbett, and Allan S. Hoffman 18. Emanuele Ostuni, R.G.C., R. Erik Holmlin, Shuichi Takayama, and and G.M. Whitesides, A Survey of Structure-Property Relationships of Surfaces
that Resist the Adsorption of Protein. Langmuir 2001: p. 17, 5605-5620
19. Yan-Yeung Luk, M.K., and Milan Mrksich, Self-Assembled Monolayers of Alkanethiolates Presenting
Mannitol Groups Are Inert to Protein Adsorption and Cell
Attachment. Langmuir, 2000: p. 16, 9604-9608.
20. Todd Talarico, A.S., and Chris Privalle, Autoxidation of Pyridoxalated Hemoglobin Polyoxyethylene Conjugate. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998: p. 250, 354–358 (1998).
21. Zwaal, R.F.A.S., A. J. , Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. BLOOD, 1997: p. VOL 89, NO 4
22. Xuan, F. and J. Liu, Preparation, characterization and application of zwitterionic polymers and membranes: current developments and perspective. Polymer International, 2009. 58(12): p. 1350-1361.
23. Long, S., Controlled biological response on blends of a phosphorylcholine-based copolymer with poly(butyl methacrylate). Biomaterials, 2003. 24(23): p. 4115-4121.
24. He, M., et al., Zwitterionic materials for antifouling membrane surface construction. Acta Biomater, 2016. 40: p. 142-52.
25. Kadoma, Y., et al., Synthesis and hemolysis test of polymer containing phosphorylcholine groups. Kobunshi Ronbunshu, 1978. 35(7): p. 423-427.
26. Ishihara, K., T. Ueda, and N. Nakabayashi, Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym J, 1990. 22(5): p. 355-360.
27. Wei Feng , S.Z.K.I., and John L. Brash Adsorption of Fibrinogen and Lysozyme on Silicon Grafted with Poly(2-methacryloyloxyethyl Phosphorylcholine) via Surface-Initiated Atom Transfer Radical Polymerization. Langmuir, 2005: p. 21 (13), pp 5980–5987.
28. Nakabayashi, N. and D. Williams, Preparation of non-thrombogenic materials using 2-methacryloyloxyethyl phosphorylcholine. Biomaterials, 2003. 24(13): p. 2431-2435.
29. Schulz, D., et al., Phase behaviour and solution properties of sulphobetaine polymers. Polymer, 1986. 27(11): p. 1734-1742.
30. Chen, L., et al., Effects of polyelectrolyte complexation on the UCST of zwitterionic polymer. Polymer, 2000. 41(1): p. 141-147.
31. Shih, Y.J. and Y. Chang, Tunable blood compatibility of polysulfobetaine from controllable molecular-weight dependence of zwitterionic nonfouling nature in aqueous solution. Langmuir, 2010. 26(22): p. 17286-94.
32. Zhang, Z., et al., Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir, 2006. 22(24): p. 10072-10077.
33. Chang, Y., et al., Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir, 2006. 22(5): p. 2222-2226.
34. Zhang, Z., et al., Zwitterionic hydrogels: an in vivo implantation study. J Biomater Sci Polym Ed, 2009. 20(13): p. 1845-59.
35. Lee, W.-F. and C.-C. Tsai, Synthesis and solubility of the poly (sulfobetaine) s and the corresponding cationic polymers: 1. Synthesis and characterization of sulfobetaines and the corresponding cationic monomers by nuclear magnetic resonance spectra. Polymer, 1994. 35(10): p. 2210-2217.
36. Ning, J., et al., Characteristics of zwitterionic sulfobetaine acrylamide polymer and the hydrogels prepared by free-radical polymerization and effects of physical and chemical crosslinks on the UCST. Reactive and Functional Polymers, 2013. 73(7): p. 969-978.
37. Sun, J., et al., Conjugation with betaine: a facile and effective approach to significant improvement of gene delivery properties of PEI. Biomacromolecules, 2013. 14(3): p. 728-36.
38. Kane, R.S., P. Deschatelets, and G.M. Whitesides, Kosmotropes form the basis of protein-resistant surfaces. Langmuir, 2003. 19(6): p. 2388-2391.
39. Nyyssölä, A., Pathways of glycine betaine synthesis in two extremely halophilic bacteria, Actinopolyspora halophila and Ectothiorhodospira halochloris. 2001: Helsinki University of Technology.
40. Jon Ladd, Z.Z., Shengfu Chen, Jason C. Hower, and Shaoyi Jiang, Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules., 2008: p. 9(5):1357-61.
41. Hana Vaisocherová, W.Y., Zheng Zhang, Zhiqiang Cao, Gang Cheng, Marek Piliarik, Jiří Homola and Shaoyi Jiang, Ultralow Fouling and Functionalizable Surface Chemistry Based on a Zwitterionic Polymer Enabling Sensitive and Specific Protein Detection in Undiluted Blood Plasma. Anal. Chem.,, 2008: p. 80 (20), pp 7894–V 7901.
42. Zheng Zhang, S.C., and Shaoyi Jiang, Dual-Functional Biomimetic Materials: Nonfouling
Poly(carboxybetaine) with Active Functional Groups for Protein
Immobilization. Biomacromolecules, 2006: p. 7, 3311-3315
43. Milner, S., Polymer brushes. Science, 1991. 251(4996): p. 905-914.
44. Halperin, A., M. Tirrell, and T. Lodge, Tethered chains in polymer microstructures, in Macromolecules: Synthesis, Order and Advanced Properties. 1992, Springer. p. 31-71.
45. Minko, S., Grafting on solid surfaces:“Grafting to” and “grafting from” methods, in Polymer surfaces and interfaces. 2008, Springer. p. 215-234.
46. Van der Waarden, M., Stabilization of carbon-black dispersions in hydrocarbons. Journal of Colloid Science, 1950. 5(4): p. 317-325.
47. Van der Waarden, M., Adsorption of aromatic hydrocarbons in nonaromatic media on carbon black. Journal of Colloid Science, 1951. 6(5): p. 443-449.
48. Mackor, E. and J. Van der Waals, The statistics of the adsorption of rod-shaped molecules in connection with the stability of certain colloidal dispersions. Journal of Colloid Science, 1952. 7(5): p. 535-550.
49. Clayfield, E. and E. Lumb, A theoretical approach to polymeric dispersant action II. Calculation of the dimensions of terminally adsorbed macromolecules. Journal of Colloid and Interface Science, 1966. 22(3): p. 285-293.
50. Yang, Z., J.A. Galloway, and H. Yu, Protein interactions with poly (ethylene glycol) self-assembled monolayers on glass substrates: diffusion and adsorption. Langmuir, 1999. 15(24): p. 8405-8411.
51. Bozukova, D., et al., Improved performances of intraocular lenses by poly (ethylene glycol) chemical coatings. Biomacromolecules, 2007. 8(8): p. 2379-2387.
52. Ferreira, P., et al., Development of a biodegradable bioadhesive containing urethane groups. Journal of Materials Science: Materials in Medicine, 2008. 19(1): p. 111-120.
53. Raynor, J.E., et al., Polymer brushes and self-assembled monolayers: versatile platforms to control cell adhesion to biomaterials (Review). Biointerphases, 2009. 4(2): p. FA3-FA16.
54. Nuzzo, R.G. and D.L. Allara, Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society, 1983. 105(13): p. 4481-4483.
55. Love, J.C., et al., Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical reviews, 2005. 105(4): p. 1103-1170.
56. Ulman, A., Formation and structure of self-assembled monolayers. Chemical reviews, 1996. 96(4): p. 1533-1554.
57. Allara, D.L. and R.G. Nuzzo, Spontaneously organized molecular assemblies. 1. Formation, dynamics, and physical properties of n-alkanoic acids adsorbed from solution on an oxidized aluminum surface. Langmuir, 1985. 1(1): p. 45-52.
58. Ye, Q., F. Zhou, and W. Liu, Bioinspired catecholic chemistry for surface modification. Chem Soc Rev, 2011. 40(7): p. 4244-58.
59. Hayase, S., et al., Syntheses of Base-Soluble Si Polymers and Their Application to Resists. 1989, ACS Publications.
60. Waite, J.H., Adhesion a la moule. Integrative and comparative biology, 2002. 42(6): p. 1172-1180.
61. Silverman, H.G. and F.F. Roberto, Understanding marine mussel adhesion. Marine Biotechnology, 2007. 9(6): p. 661-681.
62. Lin, Q., et al., Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proceedings of the National Academy of Sciences, 2007. 104(10): p. 3782-3786.
63. Murphy, J.L., et al., Adhesive performance of biomimetic adhesive-coated biologic scaffolds. Biomacromolecules, 2010. 11(11): p. 2976-2984.
64. Malisova, B., et al., Poly (ethylene glycol) adlayers immobilized to metal oxide substrates through catechol derivatives: influence of assembly conditions on formation and stability. Langmuir, 2010. 26(6): p. 4018-4026.
65. Sever, M.J., et al., Metal‐mediated cross‐linking in the generation of a marine‐mussel adhesive. Angewandte Chemie, 2004. 116(4): p. 454-456.
66. Damier, P., et al., The substantia nigra of the human brain. Brain, 1999. 122(8): p. 1421-1436.
67. Dawson, T.M. and V.L. Dawson, Molecular pathways of neurodegeneration in Parkinson′s disease. Science, 2003. 302(5646): p. 819-822.
68. Lee, H., Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 2007: p. 426–430.
69. Li, G., et al., Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials, 2008. 29(35): p. 4592-4597.
70. Wang, K. and Y. Luo, Defined surface immobilization of glycosaminoglycan molecules for probing and modulation of cell-material interactions. Biomacromolecules, 2013. 14(7): p. 2373-82.
71. Li, H., et al., Use of surface plasmon resonance to investigate lateral wall deposition kinetics and properties of polydopamine films. Biosens Bioelectron, 2013. 41: p. 809-14.
72. Yu, F., et al., Experimental and theoretical analysis of polymerization reaction process on the polydopamine membranes and its corrosion protection properties for 304 Stainless Steel. Journal of Molecular Structure, 2010. 982(1-3): p. 152-161.
73. Wei, Q., et al., Oxidant-induced dopamine polymerization for multifunctional coatings. Polymer Chemistry, 2010. 1(9): p. 1430.
74. Łuczak, T., Preparation and characterization of the dopamine film electrochemically deposited on a gold template and its applications for dopamine sensing in aqueous solution. Electrochimica Acta, 2008. 53(19): p. 5725-5731.
75. Dreyer, D.R., et al., Elucidating the structure of poly(dopamine). Langmuir, 2012. 28(15): p. 6428-35.
76. Hong, S., et al., Non-Covalent Self-Assembly and Covalent Polymerization Co-Contribute to Polydopamine Formation. Advanced Functional Materials, 2012. 22(22): p. 4711-4717.
77. Faure, E., et al., Catechols as versatile platforms in polymer chemistry. Progress in Polymer Science, 2013. 38(1): p. 236-270.
78. Waite, J.H., Surface chemistry: mussel power. Nature materials, 2008. 7(1): p. 8-9.
79. Lee, H., et al., Catechol-grafted poly(ethylene glycol) for PEGylation on versatile substrates. Langmuir, 2010. 26(6): p. 3790-3.
80. Yang, S.H., et al., Mussel-inspired encapsulation and functionalization of individual yeast cells. J Am Chem Soc, 2011. 133(9): p. 2795-7.
81. Lee, Y., et al., Thermo-sensitive, injectable, and tissue adhesive sol–gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction. Soft Matter, 2010. 6(5): p. 977.
82. Burzio, L.A. and J.H. Waite, Cross-linking in adhesive quinoproteins: studies with model decapeptides. Biochemistry, 2000. 39(36): p. 11147-11153.
83. Ju, K.Y., et al., Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules, 2011. 12(3): p. 625-32.
84. Guo, L., et al., A mussel-inspired polydopamine coating as a versatile platform for the in situ synthesis of graphene-based nanocomposites. Nanoscale, 2012. 4(19): p. 5864-7.
85. Xu, L.Q., et al., Dopamine-Induced Reduction and Functionalization of Graphene Oxide Nanosheets. Macromolecules, 2010. 43(20): p. 8336-8339.
86. Coombs, T.L. and P.J. Keller, Mytilus byssal threads as an environmental marker for metals. Aquatic Toxicology, 1981. 1(5-6): p. 291-300.
87. Holten-Andersen, N., et al., pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proceedings of the National Academy of Sciences, 2011. 108(7): p. 2651-2655.
88. Westwood, G., T.N. Horton, and J.J. Wilker, Simplified polymer mimics of cross-linking adhesive proteins. Macromolecules, 2007. 40(11): p. 3960-3964.
89. Stewart, P.S. and J. William Costerton, Antibiotic resistance of bacteria in biofilms. The Lancet, 2001. 358(9276): p. 135-138.
90. Wyszogrodzka, G., et al., Metal-organic frameworks: mechanisms of antibacterial action and potential applications. Drug Discov Today, 2016. 21(6): p. 1009-18.
91. Dizaj, S.M., et al., Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C Mater Biol Appl, 2014. 44: p. 278-84.
92. Allahverdiyev, A.M., et al, Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future microbiology 2011: p. 6.8: 933-940.
93. Ranu, B.C. and S. Banerjee, Significant rate acceleration of the aza-Michael reaction in water. Tetrahedron Letters, 2007. 48(1): p. 141-143.
94. Liu, C.Y. and C.J. Huang, Functionalization of Polydopamine via the Aza-Michael Reaction for Antimicrobial Interfaces. Langmuir, 2016. 32(19): p. 5019-28.
95. Chao Zhang, Y.O., Wen-Xi Lei, Ling-Shu Wan, Jian Ji, and Zhi-Kang Xu, CuSO4/H2O2-Induced Rapid Deposition of Polydopamine Coatings
with High Uniformity and Enhanced Stability. Angew. Chem. Int. Ed., 2016: p. 55, 1 – 5
96. Sileika, T.S., et al., Antibacterial performance of polydopamine-modified polymer surfaces containing passive and active components. ACS Appl Mater Interfaces, 2011. 3(12): p. 4602-10.
97. Yeroslavsky, G., et al., Sonochemically produced polydopamine nanocapsules with selective antimicrobial activity. Chem Commun (Camb), 2013. 49(51): p. 5721-3.
98. Liu, Z., et al., Surface-independent one-pot chelation of copper ions onto filtration membranes to provide antibacterial properties. Chem Commun (Camb), 2016. 52(82): p. 12245-12248.
99. Du, X., et al., UV-triggered dopamine polymerization: control of polymerization, surface coating, and photopatterning. Adv Mater, 2014. 26(47): p. 8029-33.
100. Luo, Y., et al., Mechanistic study of oscillations and bistability in the copper (II)-catalyzed reaction between hydrogen peroxide and potassium thiocyanate. Journal of the American Chemical Society, 1989. 111(13): p. 4541-4548.
101. Kang, S.M., et al., Simultaneous Reduction and Surface Functionalization of Graphene Oxide by Mussel-Inspired Chemistry. Advanced Functional Materials, 2011. 21(1): p. 108-112.
102. Ball, V., et al., Deposition Mechanism and Properties of Thin Polydopamine Films for High Added Value Applications in Surface Science at the Nanoscale. BioNanoScience, 2011. 2(1): p. 16-34.
103. Andjelkovic, M., et al., Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chemistry, 2006. 98(1): p. 23-31.
104. Dalibor, T., et al., Deep defect centers in silicon carbide monitored with deep level transient spectroscopy. physica status solidi (a), 1997. 162(1): p. 199-225.
105. Zangmeister, R.A., T.A. Morris, and M.J. Tarlov, Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir, 2013. 29(27): p. 8619-28.
106. Liu, P. and E.J. Hensen, Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J Am Chem Soc, 2013. 135(38): p. 14032-5.
107. Halliwell, B. and J. Gutteridge, Oxygen toxicity, oxygen radicals, transition metals and disease. Biochemical journal, 1984. 219(1): p. 1.
108. Simpson, J.A., et al., Free-radical generation by copper ions and hydrogen peroxide. Stimulation by Hepes buffer. Biochemical Journal, 1988. 254(2): p. 519-523.
109. Santo, C.E., P.V. Morais, and G. Grass, Isolation and characterization of bacteria resistant to metallic copper surfaces. Appl Environ Microbiol, 2010. 76(5): p. 1341-8.
110. Lemire, J.A., J.J. Harrison, and R.J. Turner, Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology, 2013. 11(6): p. 371-384.
111. Zhao, D., et al., Antifouling property of micro-arc oxidation coating incorporating Cu2O nanoparticles on Ti6Al4V. Surface Engineering, 2017: p. 1-7.
112. Dalsin, J.L., et al., Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG− DOPA. Langmuir, 2005. 21(2): p. 640-646.
113. Nicolle, L.E., Urinary catheter-associated infections. Infectious disease clinics of North America, 2012. 26(1): p. 13-27.
114. Saint, S. and C.E. Chenoweth, Biofilms and catheter-associated urinary tract infections. Infectious disease clinics of North America, 2003. 17(2): p. 411-432.
115. Arciola, C.R., L. Baldassarri, and L. Montanaro, In catheter infections by Staphylococcus epidermidis the intercellular adhesion (ica) locus is a molecular marker of the virulent slime-producing strains. J Biomed Mater Res, 2002. 59(3): p. 557-62.
116. Götz, F., Staphylococcus and biofilms. Molecular microbiology, 2002. 43(6): p. 1367-1378.
指導教授 黃俊仁(Chun-Jen Huang) 審核日期 2017-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明