博碩士論文 92242002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:74 、訪客IP:3.142.210.157
姓名 黃秉榮(Ping-Jung Huang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 鎂、鈷摻雜於氮化鎵奈米線之物理特性研究
(Physical properties of GaN nanowires with Mg and Co dopants)
相關論文
★ 氫氣的調控對化學氣相沉積法成長石墨烯之影響★ 氮化銦鎵/氮化鎵多重量子井的激發光譜
★ 中子質化氮化鎵材料之特性研究★ 鐵磁/超導/鐵磁單電子電晶體的製作與電子自旋不平衡現象的量測
★ 砷化鎵金屬半導體場效電晶體中p型埋藏層之效應★ 熱處理對氮化銦鎵量子井雷射結構之影響與壓電效應之分析
★ 離子佈植摻雜氮化鎵薄膜的光、電、結構特性之分析★ 離子佈植技術應用於高亮度發光二極體之設計與製作
★ 矽離子佈植氮化鎵薄膜之電性研究★ 繞射式元件之製程及特性分析
★ 氮化銦鎵/氮化鎵量子井之光特性研究★ 矽離子佈植在P型氮化鎵的材料分析與 元件特性之研究
★ 氮化鎵高數值孔徑微透鏡之設計、製作與特性分析★ 微凹平面鏡及矽光學桌之組裝設計
★ 指叉型氮化鎵發光二極體之設計製作與量測★ 氮化鎵光偵測器的暗電流與激子效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要研究鎂、鈷摻雜於氮化鎵奈米線的物理特性研
究。首先,單晶的氮化鎵奈米線是利用高溫爐式製程的氣相沉積法在矽基板上成長氮化鎵奈米線。利用掃描式電子顯微鏡、X 光繞射儀、和高解析度穿透式電子顯微鏡可測定出所成長之氮化鎵奈米線為高度方向性的單晶奈米結構。所成長的單晶氮化鎵奈米線經由離子佈植的方式來摻雜鎂、鈷原子,最後在利用高溫爐作熱退火來獲得所要研究的樣品。
在鎂摻雜於氮化鎵奈米線研究部分,鎂離子佈植的條件如
下:60 keV 的佈植能量而佈植劑量為5x1012到5x1014 cm-2。鎂離子佈植之後,我們可以由室溫的螢光光譜看到氮化鎵奈米線的能階邊緣的螢光會隨著熱退火和離子佈植的影響產生紅位移。並且觀察到由鎂所形成的donor-acceptor 對所發出的藍光(~3eV),及離子佈植所造成的缺陷所發的螢光。結構上的觀察到,奈米線相較於薄膜對於缺陷的聚集有比較高度的反應。電性方面,經由鎂離子佈植後的氮化鎵奈米線是呈現p 型半導體的行為。
在鈷摻雜於氮化鎵奈米線研究部分,鈷離子佈植的條件如下:72 keV 的佈植能量而佈植劑量為1x1016到4x1016 cm-2。經由鈷離
子佈植之後,我們可以觀察到鐵磁性的特性且超過室溫的居禮溫度。而經由X 光繞射譜及高解析度穿透式電子顯微鏡分析可以判定,鐵磁性的行為並不是來自於磁性物質的第二相化合物的形成所造成,也由X 光繞射譜確認鈷原子有取代鎵原子。
摘要(英) GaN nanowires were grown by thermal catalytic chemical vapor deposition on Si (1 0 0) substrate with Au catalyst. The GaN nanowires were study by X-ray, TEM, and SEM. The resulting nanowires have the diameters of 60-150 nm and
the lengths of 15-20 μm. Structural in the pristine GaN nanowires confirmed the growth direction of high crystalline h-GaN, with the zone axis lying along [001]
direction.
An energy of 60 keV Mg ions were implanted into the GaN nanowires with various total flux of 5×1012 cm-2 to 5×1014 cm-2. Subsequent thermal annealing treatment was carried out by a furnace at 700°C for 6 min in N2 ambient.
Transmission electron microscopy images showed amorphous layer formation and defect accumulation in the higher dose Mg-implanted GaN nanowires after annealing. 300K photoluminescence spectra of the annealed Mg-implanted GaN nanowires exhibited near-band-edge emission (NBE), donor-acceptor pair (DAP) emission, and defect-related yellow luminescence. With increasing dose, the NBE and DAP
emissions are red-shifted. Similar phenomena were observed in samples implanted with Ar to produce similar amounts of lattice disorder. The nanowires show a much higher sensitivity to defect accumulation than GaN thin films. The p-type conductivity GaN nanowries were achieved by Mg-ion implantation.
GaN nanowires were implanted 72 keV Co+ ions with fluxes of 1x1016 cm-2-4x1016 cm-2. Subsequent thermal annealing treatment was carried out by a furnace at 700°C for 6 min in N2 ambient. Ferromagnetic ordering with Curie temperature above room temperature is recorded for the Co-doped (~ 1-3.85 at%) GaN nanowires. Bound carriers and inhomogeneous doping stabilized in the structural
defects introduced by ion beam processing is made responsible for the observed long-range ordering. Our analysis from Co L3,2-shell and Co K-shell x-ray
absorption near-edge structure rules out precipitation of Co. A percolative polaron model with carrier mediated coupling of localized magnetic moments is made
responsible for the observed ferromagnetic ordering above room temperature.
關鍵字(中) ★ 奈米線
★ 氮化鎵
關鍵字(英) ★ nanowires
★ GaN
論文目次 Abstract in Chinese………………………………………… i
Abstract in English…………………………………………iii
Acknowledgements………………………………………………v
Contents……………………………………………………….vi
Table captions……………………………………….....viii
Figure captions………………………………………………ix
Chapter 1 Introduction..............................1
Chapter 2 GaN nanowires growth and ion implantation.8
2-1 GaN nanowires growth……………………………………8
2-2 Ion implantation for GaN nanowires…………………9
2-3 Sample preparation process and Experimental Steps10
Chapter 3 Characterizations of GaN Nanowires with Mg-ion implantation…………17
3-1 Background…………………………………………………17
3-2 Structural properties…………………………………19
3-3 Optical properties………………………………………23
3-4 Electrical properties…………………………………28
Chapter 4 Characterizations of GaN Nanowires with Co-ion implantation……………………………………………………51
4-1 Background…………………………………………………51
4-2 Structural properties…………………………………53
4-3 Magnetic properties……………………………………58
4-4 Optical properties………………………………………62
4-5 Electrical properties…………………………………64
Chapter 5 Conclusions………………………………………88
參考文獻 1. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv.Mater. 15, 353 (2003).
2. J. Hu, T. W. Odom, and C. M. Lieber, Acc. Chem. Res. 32, 435 (1999).
3. S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, J. Appl. Phys. 87,965 (2000).
4. J. Hu, M. Ouyang, P. Yang, and C. M. Lieber, Nature 399, 4 (1999).
5. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature 409, 66 (2001).
6. C. Y. Chang, F. C. Tsao, C. J. Pan, G. C. Chi, H. T. Wang, J. J. Chen, F. Ren, D. PNorton, S. J. Pearton, K. H. Chen, and L. C. Chen, Appl. Phys. Lett. 88, 173503 (2006).
7. H. P. Maruska, and J. J. Tietjent, Appl. Phys. Lett. 15, 327 (1969).
8. A. P. Alivisatos, Science 271, 933 (1996).
9. J. K. Sheu, and G. C. Chi, J. Phy.:Condens. Matter 14, R657 (2002).
10. S. Dhara, A. Datta, C. T. Wu, Z. H. Lan, K. H. Chen, Y. L. Wang, L. C. Chen, C.W. Hsu, H. M. Lin, and C. C. Chen, Appl. Phys. Lett. 82, 451 (2003).
11. S. J. Pearton, C. B. Vartuli, J. C. Zolper, C. Yuan, and R. A. Stall, Appl. Phys. Lett.67, 1435 (1995).
12. B. J. Pong, C. J. Pan, Y. C. Teng, G. C. Chi, W. H. Li, K. C. Lee, and C. H. Lee, J.Appl. Phys. 83, 5992(1998).
13. L. Chen and B. J. Skromme, Mat. Res. Soc. Symp. Proc. 743, L11.35.1 (2003).
14. L. C. Chen, K. C. Chen, and C. C. Chen, Group Ⅲ- and Group Ⅳ-Nitride Nanorods and Nanowires, Chap. 9, pp. 257-309, edited by Zhong Lin Wang,Nanowires and Nanobelts – Materials, Properties and Devices, Vol. 1: Metal and
Semiconductor Nanowires, Kluwer Academic Publisher (2003).
15. C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C.Chen, J. Y. Peng, and Y. F. Chen, J. Am. Chem. Soc. 123, 2791 (2001).
16. Doo Suk Han and Jeunghee Park, Kung Won Rhie, Soonkyu Kim, and JoonyeonChang, Appl. Phys. Lett. 86, 032506(2005).
17. Jeong Min Baik, Yoon Shon and Tae Won Kang, and Jong-Lam Lee, Appl. Phys.Lett. 87, 042105 (2005).
18. J. Sawahata, H. Bang, M. Takiguchi, J. Seo, H. Yanagihara, E. Kita, and K.Akimoto, Phys. Stat. Sol. (c) 2, 2458 (2005).
19. S. Dhara, B. Sundaravel, K. G. M. Nair, R. Kesavamoorthy, M. C. Valsakumar, T.V. Chandrasekhar Rao, L. C. Chen, and K. H. Chen, Appl. Phys. Lett. 88, 173110
(2006).
20. Jong-Han Lee and In-Hoon Choi, Sangwon Shin, Sunggoo Lee, J. Lee, andChungnam Whang, Seung-Cheol Lee and Kwang-Ryeol Lee, Jong-Hyeob Baek,Keun Hwa Chae, and Jonghan Song, Appl. Phys. Lett. 90, 032504 (2007).
21. J. S. Lee, J. D. Lim, Z. G. Khim, Y. D. Park, S. J. Pearton and S. N. G. Chu, J.Appl. Phys. 93, 4512 (2003).
22. S. Dhar, O. Brandt, M. Ramsteiner, V. E. Sapega, and K. H. Ploog, Phys. Rev. Lett.94, 037205 (2005).
23. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science, 287, 1019 (2000).
24. Kazunori Sato, and Hiroshi Katayama-Yoshida, Jpn. J. Appl. Phys. 40, L485(2001).
25. S. Dhara, B. Sundaravel, K. M. Nair, R. Kesavamoorthy, M. C. Valsakumar, T. V.Chandrasekhar Rao, L. C. Chen, and K. H. Chen, Appl. Phys. Lett. 88, 173110(2006).
指導教授 紀國鐘、陳貴賢、林麗瓊 審核日期 2008-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明