參考文獻 |
1. Wisniewski, N. and M. Reichert, Methods for reducing biosensor membrane biofouling. Colloids and Surfaces B: Biointerfaces, 2000. 18(3): p. 197-219.
2. Donlan, R.M., Biofilm formation: a clinically relevant microbiological process. Clinical Infectious Diseases, 2001. 33(8): p. 1387-1392.
3. Harding, J.L. and M.M. Reynolds, Combating medical device fouling. Trends in biotechnology, 2014. 32(3): p. 140-146.
4. Mérian, T. and J.M. Goddard, Advances in nonfouling materials: perspectives for the food industry. Journal of agricultural and food chemistry, 2012. 60(12): p. 2943-2957.
5. Almeida, E., T.C. Diamantino, and O. de Sousa, Marine paints: the particular case of antifouling paints. Progress in Organic Coatings, 2007. 59(1): p. 2-20.
6. Anderson, J.M., Biological responses to materials. Annual review of materials research, 2001. 31(1): p. 81-110.
7. Amiji, M. and K. Park, Surface modification of polymeric biomaterials with poly (ethylene oxide), albumin, and heparin for reduced thrombogenicity. Journal of Biomaterials Science, Polymer Edition, 1993. 4(3): p. 217-234.
8. Dunne, W.M., Bacterial Adhesion: Seen Any Good Biofilms Lately? Clinical Microbiology Reviews, 2002. 15(2): p. 155-166.
9. Flemming, H.C. and J. Wingender, The biofilm matrix. Nat Rev Microbiol, 2010. 8(9): p. 623-33.
10. Costerton, J.W., et al., Bacterial biofilms in nature and disease. Annual Reviews in Microbiology, 1987. 41(1): p. 435-464.
11. Mah, T.-F.C. and G.A. O′Toole, Mechanisms of biofilm resistance to antimicrobial agents. Trends in microbiology, 2001. 9(1): p. 34-39.
12. Watnick, P. and R. Kolter, Biofilm, city of microbes. Journal of bacteriology, 2000. 182(10): p. 2675-2679.
13. Stoodley, P., et al., Biofilms as complex differentiated communities. Annu Rev Microbiol, 2002. 56: p. 187-209.
14. Salwiczek, M., et al., Emerging rules for effective antimicrobial coatings. Trends Biotechnol, 2014. 32(2): p. 82-90.
15. Zhong, J., et al., Coating morphology and surface composition of acrylic terpolymers with pendant catechol, OEG and perfluoroalkyl groups in varying ratio and the effect on protein adsorption. Colloids Surf B Biointerfaces, 2016. 140: p. 254-61.
16. Banerjee, I., R.C. Pangule, and R.S. Kane, Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater, 2011. 23(6): p. 690-718.
17. Herold, D.A., K. Keil, and D.E. Bruns, Oxidation of polyethylene glycols by alcohol dehydrogenase. Biochemical pharmacology, 1989. 38(1): p. 73-76.
18. Ryle, A., Behaviour of polyethylene glycol on dialysis and gel-filtration. Nature, 1965. 206(4990): p. 1256-1256.
19. Alcantar, N.A., E.S. Aydil, and J.N. Israelachvili, Polyethylene glycol-coated biocompatible surfaces. Journal of biomedical materials research, 2000. 51(3): p. 343-351.
20. Knop, K., et al., Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl, 2010. 49(36): p. 6288-308.
21. Gonias, S.L., M. Einarsson, and S.V. Pizzo, Catabolic Pathways for Streptokinase, Plasmin, and Streptokinase Activator Complex in Mice: IN VIVO REACTION OF PLASMINOGEN ACTIVATOR WITH α2-MACROGLOBULIN. Journal of Clinical Investigation, 1982. 70(2): p. 412.
22. Beauchamp, C.O., et al., A new procedure for the synthesis of polyethylene glycol-protein adducts; effects on function, receptor recognition, and clearance of superoxide dismutase, lactoferrin, and α2-macroglobulin. Analytical biochemistry, 1983. 131(1): p. 25-33.
23. Hunter, C., D. Stevenson, and P. Chambers, Acute and short-term oral toxicity in rats of RD 025, a propylene glycol-ethylene oxide copolymer. Food and cosmetics toxicology, 1967. 5: p. 195-199.
24. Smyth, H.F., C.P. Carpenter, and C.S. Weil, The Chronic Oral Toxicology of thePolyethylene Glycols. Journal of the American Pharmaceutical Association (Scientific ed.), 1955. 44(1): p. 27-30.
25. Weiner, B., et al., Atropine attached to polyethylene glycols. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 1976. 11(6): p. 525-526.
26. Weiner, B.-Z. and A. Zilkha, Polyethylene glycol derivatives of procaine. Journal of medicinal chemistry, 1973. 16(5): p. 573-574.
27. Zalipsky, S., C. Gilon, and A. Zilkha, Attachment of drugs to polyethylene glycols. European Polymer Journal, 1983. 19(12): p. 1177-1183.
28. Mincheva, Z., N. Stambolieva, and I. Rashkov, Preparation and properties of di-, tri-and poly-(ethyleneglycol) esters of 2-benzoxazolon-3-yl-acetic acid. European polymer journal, 1994. 30(7): p. 761-765.
29. Yuan, S., et al., Lysozyme-coupled poly (poly (ethylene glycol) methacrylate)− stainless steel hybrids and their antifouling and antibacterial surfaces. Langmuir, 2011. 27(6): p. 2761-2774.
30. Rundqvist, J., J.H. Hoh, and D.B. Haviland, Poly (ethylene glycol) self-assembled monolayer island growth. Langmuir, 2005. 21(7): p. 2981-2987.
31. Zoulalian, V., et al., Functionalization of titanium oxide surfaces by means of poly (alkyl-phosphonates). The Journal of Physical Chemistry B, 2006. 110(51): p. 25603-25605.
32. Kohler, N., G.E. Fryxell, and M. Zhang, A bifunctional poly (ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. Journal of the American Chemical Society, 2004. 126(23): p. 7206-7211.
33. Nagaoka, S., et al., Polymers as biomaterials. SW Shalaby, AS Hoffman, BD Ratner and TA Horbett, Ed, 1984. 361.
34. Yuan, S., et al., Lysozyme-coupled poly(poly(ethylene glycol) methacrylate)-stainless steel hybrids and their antifouling and antibacterial surfaces. Langmuir, 2011. 27(6): p. 2761-74.
35. Choi, Y.S., et al., Mussel-inspired dopamine- and plant-based cardanol-containing polymer coatings for multifunctional filtration membranes. ACS Appl Mater Interfaces, 2014. 6(23): p. 21297-307.
36. Kumar, V.M.a.R., Living radical polymerization: A review. Journal of Scientific Research, 2012. 56: p. 141-176.
37. Faure, E., et al., Catechols as versatile platforms in polymer chemistry. Progress in Polymer Science, 2013. 38(1): p. 236-270.
38. Lee, H., N.F. Scherer, and P.B. Messersmith, Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences, 2006. 103(35): p. 12999-13003.
39. Ye, Q., F. Zhou, and W. Liu, Bioinspired catecholic chemistry for surface modification. Chemical Society Reviews, 2011. 40(7): p. 4244-4258.
40. TANZER, J.H.W.a.M.L., Polyphenolic Substance of Mytilus edulis: Novel Adhesive Containing L-Dopa and Hydroxyproline. Science, 1981. 212(4498): p. 1038-1040.
41. Waite, J.H., Nature′s underwater adhesive specialist. INTJ.ADHESlON AND ADHESIVES, 1987.
42. Lee, H., et al., Mussel-inspired surface chemistry for multifunctional coatings. science, 2007. 318(5849): p. 426-430.
43. Lee, H., B.P. Lee, and P.B. Messersmith, A reversible wet/dry adhesive inspired by mussels and geckos. Nature, 2007. 448(7151): p. 338-41.
44. Li, L., et al., Mussel-inspired antifouling coatings bearing polymer loops. Chem Commun (Camb), 2015. 51(87): p. 15780-3.
45. Xu, L.Q., et al., Layer-by-layer deposition of antifouling coatings on stainless steel via catechol-amine reaction. RSC Advances, 2014. 4(61): p. 32335.
46. GhavamiNejad, A., C.H. Park, and C.S. Kim, In Situ Synthesis of Antimicrobial Silver Nanoparticles within Antifouling Zwitterionic Hydrogels by Catecholic Redox Chemistry for Wound Healing Application. Biomacromolecules, 2016. 17(3): p. 1213-23.
47. Sanchez, C., H. Arribart, and M.M.G. Guille, Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature materials, 2005. 4(4): p. 277-288.
48. Munch, E., et al., Tough, bio-inspired hybrid materials. Science, 2008. 322(5907): p. 1516-1520.
49. Barrett, J., Photo-oxidation of magnesium porphyrins and formation of protobiliviolin. Nature, 1967. 215(5102): p. 733-735.
50. Alben, J., et al., Cytochrome oxidase (a3) heme and copper observed by low-temperature Fourier transform infrared spectroscopy of the CO complex. Proceedings of the National Academy of Sciences, 1981. 78(1): p. 234-237.
51. Ejima, H., et al., One-step assembly of coordination complexes for versatile film and particle engineering. Science, 2013. 341(6142): p. 154-7.
52. Guo, J., et al., Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew Chem Int Ed Engl, 2014. 53(22): p. 5546-51.
53. Ju, Y., et al., Engineering low-fouling and pH-degradable capsules through the assembly of metal-phenolic networks. Biomacromolecules, 2015. 16(3): p. 807-14.
54. Rahim, M.A., et al., Metal-Phenolic Supramolecular Gelation. Angew Chem Int Ed Engl, 2016. 55(44): p. 13803-13807.
55. Lemire, J.A., J.J. Harrison, and R.J. Turner, Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol, 2013. 11(6): p. 371-84.
56. https://www.gr8potential.ca/news/free-radicals-nutritional-science.
57. Cortes-Cortes, P., et al., Magnetic behavior and antibacterial activity of iron (III) complexes. Journal of the Chilean Chemical Society, 2008. 53(2): p. 1527-1532.
58. http://xpssimplified.com/elements/silicon.php.
59. Kolaylı, S., et al., Does caffeine bind to metal ions? Food chemistry, 2004. 84(3): p. 383-388.
60. http://web1.knvs.tp.edu.tw/AFM/ch4.htm.
61. Xu, L.Q., et al., Antifouling Coatings of Catecholamine Copolymers on Stainless Steel. Industrial & Engineering Chemistry Research, 2015. 54(22): p. 5959-5967.
62. 薛敬和, 高分子設計. 2007.
63. Iffat, A., et al., Interaction of tannic acid with higher oxidation state of iron. JOURNAL-CHEMICAL SOCIETY OF PAKISTAN., 2004. 26: p. 151-156.
64. Theis, T.L. and P.C. Singer, Complexation of iron (II) by organic matter and its effect on iron (II) oxygenation. Environmental Science & Technology, 1974. 8(6): p. 569-573.
65. http://xpssimplified.com/elements/carbon.php.
66. Liu, C.Y. and C.J. Huang, Functionalization of Polydopamine via the Aza-Michael Reaction for Antimicrobial Interfaces. Langmuir, 2016. 32(19): p. 5019-28.
67. http://xpssimplified.com/elements/iron.php.
68. McIntyre, N. and D. Zetaruk, X-ray photoelectron spectroscopic studies of iron oxides. Analytical Chemistry, 1977. 49(11): p. 1521-1529.
69. http://xpssimplified.com/elements/nitrogen.php.
70. http://xpssimplified.com/elements/oxygen.php.
71. Luzinov, I., et al., Polystyrene layers grafted to epoxy-modified silicon surfaces. Macromolecules, 2000. 33(3): p. 1043-1048.
72. Melzak, K.A., et al., Chain Length and Grafting Density Dependent Enhancement in the Hydrolysis of Ester-Linked Polymer Brushes. Langmuir, 2015. 31(23): p. 6463-70. |