博碩士論文 104622018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.145.33.153
姓名 林諭澤(Yu-Tse Lin)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 利用背景噪訊技術探討台灣近海海底淺層沉積物之剪力波速度
(Shear-wave velocity of shallow marine sediments offshore Taiwan using ambient seismic noise)
相關論文
★ 台灣西南外海永安海脊區域之速度構造與天然氣水合物飽和度研究★ 利用TAMS初步分析台灣東部海域海底地震儀資料
★ 由海底地震儀資料探討加瓜海脊鄰近區域之地震構造★ 隱沒帶不同耦合型態的地震特性分析:外部隆起地震與地震所引起的重力位能變化
★ 利用海底地震儀分析颱風對於海底震波雜訊的 影響★ 由海底地震儀資料探討台灣東部海域之地震地體構造
★ 由海底地震儀資料探討宜蘭外海琉球 隱沒帶之地震地體構造★ 全球隱沒帶的板塊撓曲量模擬和地震活動相關性分析
★ 利用寬頻地震儀分析颱風期間的低頻訊號來源★ 利用海底地震儀資料探討北馬尼拉隱沒帶之地震地體構造
★ 利用海底仿擬反射訊號深度估算台灣西南海域地溫梯度分布研究★ 由海底地震儀資料探討南沖繩海槽熱液活動
★ 以寬頻地震儀及分壓計之波形分析環境變動過程:與流體力學相關
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 背景噪訊技術有許多優點,因為噪訊無時無刻都在發生且分佈廣泛,也不受大地震事件或人工震源的限制,因此,可以從任意測站對資料經過交對比後得到站間的格林函數來獲得所需要資訊。目前台灣已經有許多的陸上測站用此方法估算淺層的速度構造,相對地,海底地震儀 (Ocean Bottom Seismometer;OBS) 除了施測成本較高外,記錄時間也相當有限,因此此項技術很少被應用在台灣海域微地動資料的分析上。然而,隨著海底資源探勘及海域災害潛勢評估需求增加,如何取得海底沉積物剪力波速度以評估海底滑坡的剪力強度成為相關災害的重要關鍵。
  本研究收集台灣東北及西南各兩組海底地震儀臨時地震網資料:東北的兩組觀測網落在琉球隱沒系統附近;西南的兩組則分別靠近高屏陸坡及手掌海脊區域。透過交對比函數得知微震的來源方向,並進一步藉由相速度頻散估算當地淺部沉積物的剪力波速度。分析結果在東北海域顯示多變的噪訊訊號來源,比較靠近台灣的部份可能是海浪拍打海岸回彈後產生,而離岸較遠及海槽內側則可能源自於海浪與崎嶇海床間的交互作用。而在西南海域,噪訊源有較一致的來源方向,從南方向北方傳遞,推測應是由大洋中的海浪拍打到淺水域的大陸斜坡回彈所產生的噪訊訊號。
  剪力波速度可決定相速度頻散曲線,東北海域的部分頻散曲線速度略高於西南海域,可能與東北海域淺層有較多火成岩體有關。這結果與南沖繩海槽火山活動地區速度普遍較周遭沉積層快相符。把高屏陸坡的ㄧ維剪力波速度模型比對先前的震測剖面,高速區能對應到較為堅硬的海脊和泥貫入體,而低速區則對應到較鬆散的崩塌區域;整個手掌海脊地區的剪力波速度分佈相當一致並普遍偏低,可能是因為此區遍佈崩塌構造所造成。本研究所得到的淺層沉積物剪力波速度約在0.38和0.62 km/s之間,和西南外海研究區域附近由海底地震儀折射剖面資料所逆推出的速度構造非常一致,證明使用背景噪訊技術能夠以較簡單的方式獲得當地的剪力波參數。未來如果能增加測站的密度與記錄時間,相信對於海床底下的能源開採或是探討海底邊坡穩定性都會是有利的貢獻。
摘要(英)
Seismic ambient noise technology has many advantages over the traditional two-station method, the most important reason is that noise is happening all the time, so the signal can be widely and evenly distributed. Also, data resources will not be limited by earthquake events or artificial source. Since Green’s Function of any two stations can be obtained easily through cross-correlation method, related studies become more and more popular in the recent ten years. There are many studies using this concept to obtain the underground velocity structures based on onshore seismic stations. Only a few studies were reported for the marine area due to the relatively shorter recording time of ocean bottom seismometers (OBS) deployment and the high cost of the marine experiment. However, the understanding about the shear-wave velocity (Vs) of the marine sediments is very crucial for the hazard assessment related to submarine landslides, particularly with the growing of submarine resources exploration.
In this study, we applied the ambient noise technique to the four OBS seismic networks located offshore Taiwan in the aim of getting more information about the noise sources and having the preliminary estimation for the Vs of the marine sediments. Two of the seismic networks were deployed in the NE part of Taiwan, near the Ryukyu subduction system, whereas the others were in the SW area, near the Kao-Ping Canyon and Palm Ridge areas. Generally, ambient seismic noise could be associated with wind, ocean waves, rock fracturing and anthropogenic activity. In the southwestern Taiwan, the cross-correlation function obtained from two seismic networks indicate similar direction, suggestion that the source from the south of the network could be the origin of the noise. However, the two networks in the northeastern Taiwan show various source directions, which could be caused by the abrupt change of bathymetry. The Vs determined from the dispersion curve shows a relatively higher value for the networks in the Okinawa Trough (OT) off NE Taiwan than that in the continental margin offshore SW Taiwan. This observation could be linked to the presence of numerous volcanic outcrops in the shallow marine sediments is the OT area. By comparing the 1-D velocity shear-wave profile with the previous studies, we found that the low Vs area could be associated with a sedimentary layer filled with gas in the OT and the creeping or slumping area along the continental margin. Relatively high shear wave velocity structures near the Kao-Ping Canyon could be linked to the presence of mud diapir or submarine ridge. The whole area of Palm Ridge is characterized by a relatively lower shear wave velocity, which may be due to the entire area is covered by a thick distribution of submarine material. The Vs range between 0.38 to 0.62 km/s was estimated from our study also shows a good agreement with the velocity profile obtained based on the OBS seismic refraction experiment, suggesting that this method could be a more economical and effective way for the acquisition of the Vs parameters.
關鍵字(中) ★ 震波背景噪訊
★ 台灣近海
★ 頻散曲線
★ 剪力波速度
關鍵字(英) ★ ambient seismic noise
★ offshore Taiwan
★ dispersion curves
★ shear wave velocity
論文目次
摘要 II
Abstract IV
致謝 VI
目錄 VII
圖目錄 X
表目錄 XIII
附錄 A目錄 XIV
第一章 緒論 1
第二章 研究區域概況 8
2-1 台灣地體構造背景 8
2-2 台灣東北海域 9
2-2-1 沖繩海槽地體構造概述 9
2-2-2 沖繩海槽淺層沉積物 9
2-2-3 南沖繩海槽熱液噴泉區 10
2-2-4 和平海盆 11
2-3 台灣西南海域 11
2-3-1 西南海域構造概況 11
2-3-2 泥貫入體與泥火山 12
2-3-3 西南海域淺層沉積特徵 12
2-3-4 手掌海脊 13
第三章 儀器介紹與理論背景 25
3-1 海底地震儀 25
3-2 震波背景噪訊 26
3-2-1 基礎概念 26
3-2-2理論背景 27
第四章 資料處理 34
4-1 資料採集 34
4-2 交對比函數計算與疊加 34
4-3 資料篩選 36
4-4 訊號方向性 36
4-5 表面波頻散分析 38
4-5-1 群速度頻散挑選 38
4-5-2 相速度頻散挑選 39
4-5-3 頻散篩選 40
4-6 一維速度模型反演 41
第五章 結果與討論 62
5-1 背景噪訊訊號源 62
5-1-1 2011年琉球島弧觀測網 62
5-1-2 2016年南沖繩海槽觀測網 62
5-1-3 2014年高屏陸坡觀測網 63
5-1-4 2015年手掌海脊觀測網 63
5-2 一維速度模型 64
5-2-1 2011年琉球島弧觀測網 64
5-2-2 2016年南沖繩海槽觀測網 64
5-2-3 2014年高屏陸坡觀測網 65
5-2-4 2015年手掌海脊觀測網 66
第六章 結論 83
參考文獻 85
附錄 A 90
參考文獻

Angelier, J. (1986). Geodynamics of the Eurasia-Philippine Sea Plate boundary: Preface, Tectonophys., 125, IX-X.
Bensen, G. D., M. H. Ritzwoller, M. P. Barmin, A. L. Levshin, F. Lin, M. P. Moschetti, N. M. Shapiro, and Y. Yang (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements: Geophys. J. Int., 169, no. 3, 1239–1260.
Campillo, M., and A. Paul (2003). Long-Range Correlations in the Diffuse Seismic Coda, Science, 299(5606), 547-549.
Chen, J. H., B. Froment, Q. Y. Liu, and M. Campillo (2010). Distribution of seismic wave speed changes associated with the 12 May 2008 Mw 7.9 Wenchuan earthquake, Geophys. Res. Lett., 37, L18302, doi: 10.1029/2010GL044582.
Chen, S.-C., S.-K., Hsu, Y. Wang, S.-H. Chung, P.-C. Chen, C.-H. Tsai, C.-S. Liu, and Y.-W. Lee (2014). Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan, J. Asian Earth Sci., 92, 201–214.
Chen, K.-X., H. Kuo-Chen, D. Brown, Q. Li, Z. Ye, W.-T. Liang, C.-Y. Wang, and H. Yao (2016). Three-dimensional ambient noise tomography across the Taiwan Strait: The structure of a magma-poor rifted margin, Tectonics, 35, 1782-1792 doi: 10.1002/2015TC004097.
Deffontaines, B., C.-S. Liu, J. Angelier, C.-T. Lee, J.-C. Sibuet, Y.-B. Tsai, S. Lallemand, C.-Y. Lu, C.-S. Lee, S.-K. Hsu, H.-T. Chu, J.-C. Lee, E. Pathier, R.-F. Chen, C.-T. Cheng, C.-W. Liao, C.-C. Lin, H.-H. Hsu (2001). Preliminary neotectonic map of onshore-offshore Taiwan. Terr. Atmos. Ocean. Sci., Supplementary Issue, 339-349
Derode, A., E. Larose, M. Tanter, J. de Rosny, A. Tourin, M. Campillo, M. Fink (2003). Recovering the Green’s function from field-field correlations in an open scattering medium (L), J. Acoust. Soc. Am., 113, 2973–2976.
Diekmann, D., J. Hofmann, R. Henrich, D. K. Fütterer, U. Röhl, and K.-Y. Wei (2008). Detrital sediment supply in the southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quaternary, Mar. Geol., 255, pp. 83-95.
Doo, W.-B., S.-K. Hsu, C.-L. Lo, S.-C. Chen, C.-H. Tsai, J.-Y. Lin, Y.-P. Huang, Y.-S. Huang, S.-D. Chiu, and Y.-F. Ma (2015). Gravity anomalies of the active mud diapirs off southwest Taiwan, Geophys. J. Int., 203, 2089–2098, doi: 10.1093/ gji/ggv430.
Dziewonski, A., S. Bloch and M. Landisman (1969), A technique for the analysis of transient seismic signals, Bull. Seism. Soc. Am., vol. 59, pp. 427-444.
Forsyth, D. W., S. C. Webb, L. M. Dorman, Y. Shen (1998). Phase Velocities of Rayleigh Waves in the MELT Experiment on the East Pacific Rise, Science, 280, 1235–1238.
Hennino, R., N. Trégourès, N. M. Shapiro, L. Margerin, M. Campillo, B. A. van Tiggelen, and R. L. Weaver (2001). Observation of Equipartition of Seismic Waves, Phys. Rev. Lett. 86, 3447.
Herrmann, R., & Ammon, C. (2004). Surface waves, receiver functions and crustal structure. Computer Programs in Seismology, V. 3.30, Saint Louis University.
Huang, H., Yao, H., and van der Hilst, R. D. (2010). Radial anisotropy in the crust of SE Tibet and SW China from ambient noise interferometry, Geophys. Res. Lett., 37, L21310, doi:10.1029/2010GL044981.
Huh, C.-A., C.-C. Su, W.-T. Liang, and C.-Y. Ling (2004). Linkages between turbidites in the southern Okinawa Trough and submarine earthquakes, Geophys. Res. Lett., vol. 31, doi: 10.1029/2004GL019731.
Kasahara, J., Sato, T., Momma, H., and Shirasaki, Y. (1998a). A new approach to geophysical real-time measurements on a deep-sea floor using decommissioned submarine cables. Earth Planets and Space, 50, 913-926.
Klingelhoefer, F., C.-S. Lee, J.-Y. Lin, and J.-C. Sibuet (2009). Structure of the southernmost Okinawa Trough from reflection and wide-angle seismic data, Tectonophys., vol. 466, pp. 281-288.
Larose, E., A. Derode, D. Corennec, L. Margerin and M. Campillo (2005). Passive retrieval of Rayleigh waves in disoredered elastic media, Phys. Rev. E, 72, 046607.
Liu, C.-S., Schnurle, P., Wang, Y.-S., Chung, S.-H., Chen, S.-C. & Hsiuan, T.-H. (2006). Distribution and characters of gas hydrate offshore of southwestern Taiwan, Terr. Atmos. Ocean. Sci., 17, 615–644.
Matoza, R. S., D. Fee, M. A. Garcés, J. M. Seiner, P. A. Ramón, and M. A. H. Hedlin (2009). Infrasonic jet noise from volcanic eruptions, Geophys. Res. Lett., vol. 36, doi: 10.1029/2008GL036486.
Seno, T., S. Stein, A. E. Gripp (1993).A model for the motion of the Philippine sea plate consistent with NUVEL-1 and geological data, J. Geophys. Res., 98, 17941–17948.
Seats, K.J., Lawrence, J.F. & Prieto, G.A. (2012). Improved ambient noise correlation functions using Welch’s method, Geophys. J. Int., 188, 513–523.
Sibuet, J.-C., Deffontaines, B., Hsu, S.-K., Thareau, N., Le Formal, J.-P., and Liu, C.-S. (1998). Okinawa trough backarc basin: Early tectonic and magmatic evolution, J. Geophys. Res., 103(B12), 30245-30267. doi: 10.1029/98jb01823.
Snieder, R. (2004). Extracting the Green′s function from the correlation of coda waves: A derivation based on stationary phase, Phys. Rev. E, 69, doi: 10.1103/PhysRevE.69.046610.
Snieder, R., and K. Wapenaar (2010). Imaging with ambient noise: Phys., 63, (9), pp. 44-49.
Stehly, L., M. Campillo, and N. M. Shapiro (2006). A study of the seismic noise from its long-range correlation properties, J. Geophys. Res. 111, B10306, doi 10.1029/2005JB004237.
Teng, L. S. (1996). Extensional collapse of the northern Taiwan mountain belt. Geol., 24(10), 949-952.
Uyeda, S., and Kanamori, H. (1979). Back-arc opening and the mode of subduction: Journal of Geophys. Res., vol. 84, pp. 1049–1061, doi: 10.1029/JB084iB03p01049.
Weaver, R. L. and I. O. Lobkis (2001a). Ultrasonics without a source: Thermal fluctuation correlation at MHz frequencies, Phys. Rev. E, 87.
Weaver, R. L. and I. O. Lobkis (2001b). On the emergence of the Green’s function in the correlations of a diffuse field, J. Acoust. Soc., 110, 3011–3017.
Weaver, R. L. and I. O. Lobkis (2004). Diffuse fields in open systems and the emergence of the Green’s function, J. Acoust. Soc., 116, 2731–2734.
Weaver, R. L. (2005). Information from seismic noise, Sci. 307, 1568–1569.
Yang, Y., Ritzwoller, M. H., Lin, F. C., Moschetti, M. P., and Shapiro, N. M. (2008). Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography, J. Geophys. Res., 113, B12310, doi: 10.1029/2008JB005833, 2008b.
Yao, H.-J., R. D. van der Hilst, and M. V. de Hoop (2006). Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps, Geophys. J. Int. 166, 732–744, doi: 10.1111/j.1365-246X.2006.03028.x.
Yao, H.-J., and R. D. van der Hilst (2009). Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet, Geophys. J. Int. 179, 1113–1132, doi: 10.1111/j.1365-246X.2009.04329.x.
Yao, H.-J., X. Campman, M. V. de Hoop, and R. D. van der Hilst (2009). Estimation of surface wave Green’s functions from correlation of direct waves, coda waves, and ambient noise in SE Tibet, Phys. Earth Planet. In. 177, 1–11, doi: 10.1016/j.pepi.2009.07.002.
Yeh, Y.-C., J.-Y. Lin, C.-H. Tsai, S.-K. Hsu, S.-C. Chen, and S.-S. Lin (2016). Characteristics and features of the submarine landslides in passive and active margin southwestern offshore Taiwan, 2016 Taiwan Geosciences Assembly (TGA), May 16-19, Taipei, Taiwan.
Zha, Y., S.C. Webb, S.S. Wei, D.A. Wiens, D.K. Blackman, W. Menke, R.A. Dunn, J.A. Conder (2014). Seismological imaging of ridge-arc interaction beneath the Eastern Lau Spreading Center from OBS ambient noise tomography Earth Planet. Sci. Lett., 408, pp. 194–206.
You, S.-H., Y. Gung, L.-Y. Chiao, Y.-N. Chen, C.-H. Lin, W.-T. Liang, and Y.-L. Chen (2010). Multiscale Ambient Noise Tomography of Short-Period Rayleigh Waves across Northern Taiwan, Bull. Seism. Soc. Am., Vol. 100, No. 6, pp. 3165–3173, doi: 10.1785/0120090394.
Yu, S.B.; Chen, H.Y., Kuo, L.C. (1997) Velocity field of GPS stations in the Taiwan area. Tectonophys., (274): 41–59.
何春蓀,臺灣地質概論─台灣地質圖說明書。經濟部中央地質調查所出版, 164頁,1986年。
金翔龍和喻普之,沖繩海槽的構造特徵與演化,中國科學,第二期,共8頁,1987年。
袁迎如、陳冠球、楊文達和朱成文,沖繩海槽沉積物的特徵,海洋學報,第9卷,第3期,1987年。
徐泊樺,南沖繩海槽地質構造之震測解釋,國立中央大學應用地質研究所碩士論文,共60頁,1999年。
經濟部中央地質調查所,「大台北地區特殊地質災害調查與監測‐地熱流與海域海底火山調查與監測(1/4)」成果報告書,2004年。
經濟部中央地質調查所,第二期國家能源計劃105年期末報告-臺灣西南海域天然氣水合物資源地質精查及南部海域天然氣水合物賦存潛能調查(3/4),2016年。
吳伶伶,海洋的奧秘,科學出版社,160頁,2003年。
李易隆,台灣東北部海域海底火山與熱液噴泉之研究,國立臺灣海洋大學研究所碩士論文,共44頁,2005年。
莊惠如,台灣西南海域泥貫入體分布與構造活動之關係,國立台灣大學理學院海洋研究所碩士論文,共113頁,2006年。
康竹君、張翠玉、李建成、陳柔妃,南沖繩海槽之最西端之梨山斷層最北端:蘭陽平原的構造活動特性,西太平洋地質科學,第八卷,17-42頁,2008年。
林慶仁,台灣東部海域地震觀測研究暨儀器研發,國立台灣中央大學博士學位論文,共110頁,2009年。
黃有志,台灣地區多尺度震波背景噪訊研究,國立中央大學地球物理研究所博士論文,共256頁,2010年。
羅正平,南沖繩海槽構造與火成岩體分佈之硏究,臺灣大學海洋研究所學位論文,共67頁,2011年。
林綉媚,臺灣─琉球隱沒與碰撞交界地區的構造特徵,臺灣大學海洋研究所碩士論文,共61頁,2011年。
林正洪、呂佩玲、郭冠宏,火山地震之辨識與分析研究(II),中央氣象局,共16頁,2012年。
陳松春、邱協棟、許樹坤,矗立在海底的長城—枋寮海脊。經濟部中央地質調查所-地質,第33卷,第2期,45-52頁,2014年。
陳凱勛,利用噪訊成像反演宜蘭平原上部地殼三維高解析度S波速度構造,國立中央大學地球物理研究所碩士論文,共96頁,2015年。
鄭文彬、張育萍、林靜怡、許樹坤、董家鈞、許懷後,臺灣西南海域三條海底地震儀測線震波速度構造及其在海床穩定性之意義,2016年地質與地物年會,5月16-19,台灣,2016年。
蘇政緯,台灣西南海域手掌海脊天然氣水合物相關近海床構造之研究,國立中央大學地球物理研究所碩士論文,共152頁,2016年。
指導教授 林靜怡(Jing-Yi Lin) 審核日期 2017-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明