博碩士論文 992413004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.129.63.214
姓名 楊安民(An-ming Yang)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 腸道共生黴菌與酒精性肝病的相關性
(The Association of Intestinal Fungi and Alcoholic Liver Disease)
相關論文
★ 以生物資訊分析與實驗驗證探討大腸桿菌蛋白質體晶片找出的乳鐵胜肽B胞內目標蛋白★ 結合奈米脂粒與抗體微陣列晶片的高通量快速檢測系統之發展並應用於婦女子宮頸炎病因之診斷與研究
★ 蛋白質 G 與具硫基反應性的釕複合物之生物接合作為螢光免疫試驗的通用試劑★ 利用微陣列蛋白質晶片帥選GNRA tetraloop結合蛋白
★ 利用大腸桿菌蛋白質體晶片分析新生兒血液中的免疫球蛋白★ 利用大腸桿菌蛋白質體晶片找出參與第一型線毛表現之細菌蛋白質
★ 利用人類蛋白質體微陣列晶片探究C型肝炎病毒非轉譯區與宿主之交互作用★ 利用大腸桿菌蛋白體微陣列晶片系統性探討抗菌肽的胞內作用目標
★ 利用大腸桿菌蛋白質體晶片找出與2-氧基組胺酸交互作用之蛋白質★ 發展微珠式96孔過濾盤競爭型免疫分析法偵測硫酸紫菌素
★ 異質性核醣核酸蛋白K (hnRNP K) 抑制成熟miRNA-122轉錄後調控機制之研究★ 利用酵母菌蛋白質體晶片找出與前信使核糖核酸加 工因子19泛素連接?經泛素化作用之受質
★ 在大腸桿菌與酵母菌蛋白質體晶片中量化其蛋白質的濃度★ 應用大腸桿菌與酵母菌蛋白質體晶片系統性分析抗菌肽及抗生素作用之目標蛋白質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在台灣地區,由於病毒性肝炎的盛行,慢性肝病及肝硬化是一個重要的課題。最近幾年來由於B型肝炎疫苗接種的普及及病毒性B型及C型肝炎治療的大幅度進展,因病毒性肝炎所導致的肝硬化及其併發症已經明顯的下降,相較之下,酒精濫用所導致的肝病及肝硬化卻明顯上升,酒精性肝硬化所導致的失能與死亡數在台灣也節節上升,在美國大約有一半的肝硬化所導致的死亡與酒精濫用相關,酒精導致的肝病的發生率正在明顯的上升,其重要性不言可喻。
慢性的酒精濫用而導致慢性酒精性肝病的病理機轉已被證實與腸道共生菌的生態失調有關、然而人類腸道共生的微生物並非只有細菌、腸道共生的黴菌在酒精性肝病扮演的角色並沒有被研究過。
在這個研究中,我們利用小鼠模式證明了慢性的酒精過量攝取會導致腸道共生黴菌的增生並導致黴菌細胞壁的Beta-葡聚糖轉移到血液循環中;對小鼠投以口服抗黴菌藥物會減少腸道黴菌的增生、減少血液循環中Beta-葡聚糖的量,從而減輕酒精性肝傷害;接下來我們藉由小鼠的骨髓移植製造了骨髓崁合體小鼠,並證明了Beta-葡聚糖經由與肝臟庫氏細胞或其他骨髓衍生細胞的CLEC7A受體結合來引發肝臟的發炎反應,引發了後續的IL-1β的表現及分泌增加並導致了肝發炎、惡化了酒精性肝病的程度。
在人體實驗上,我們觀察到酒精依賴患者表現出較低的腸道共生黴菌的多形性並合併念珠菌的增生;相較於健康個體及非酒精相關的肝硬化患者,酒精性肝硬化患者對黴菌所產生的系統性免疫反應也明顯增加,更甚者,我們發現個體對腸道外黴菌暴露的增加及其免疫反應與酒精性肝硬化的死亡率相關。
簡言之,慢性酒精的過量攝取會改變腸道中黴菌的生態平衡並增加黴菌細胞相關產物轉移至血液循環中,藉由操縱腸道中黴菌生態的平衡可能是一個有效減輕酒精性肝傷害的方法。
摘要(英) Chronic liver disease with cirrhosis is a major medical problem in Taiwan, mainly because of endemic of viral hepatitis. In recent years, with the enforcement of universal vaccination for hepatitis B and the advance of treatment for both viral hepatitis B and C, the burden of viral hepatitis related cirrhosis is decreased significantly. In the contrast, alcohol related liver disease and cirrhosis is significantly increased. In the United States, alcoholic liver disease accounts for approximately half of all cirrhosis deaths. The prevalence of alcohol related liver disease is increasing and the importance cannot be overemphasized.
Chronic alcohol consumption is associated with intestinal bacterial dysbiosis, yet we understand little about the contribution of intestinal fungi, or mycobiota, to alcoholic liver disease. Here we have demonstrated that chronic alcohol administration increases mycobiota populations and translocation of fungal β-glucan into systemic circulation in mice. Treating mice with antifungal agents reduced intestinal fungal overgrowth, decreased β-glucan translocation, and ameliorated ethanol-induced liver disease. Using bone marrow chimeric mice, we found that β-glucan induces liver inflammation via the C-type lectin–like receptor CLEC7A on Kupffer cells and possibly other bone marrow–derived cells. Subsequent increases in IL-1β expression and secretion contributed to hepatocyte damage and promoted development of ethanol-induced liver disease. We observed that alcohol-dependent patients displayed reduced intestinal fungal diversity and Candida overgrowth. Compared with healthy individuals and patients with non–alcohol-related cirrhosis, alcoholic cirrhosis patients had increased systemic exposure and immune response to mycobiota. Moreover, the levels of extraintestinal exposure and immune response correlated with mortality. Thus, chronic alcohol consumption is associated with an altered mycobiota and translocation of fungal products. Manipulating the intestinal mycobiome might be an effective strategy for attenuating alcohol-related liver disease.
關鍵字(中) ★ 酒精性肝病
★ 黴菌
★ 腸道共生菌
★ 肝臟免疫學
關鍵字(英) ★ Alcoholic liver disease
★ Mycobiome
★ Intestinal commensal microorganism
★ Hepatic immunology
論文目次 Table of contents
中文摘要…………………………………….i
Abstract …………..………………………iii
Acknowledgement ..…………………………v
Table of contents ..………………………vi
List of figures ………………………….vii
List of tables and.appendage………….viii
I : Introduction
1-1 Rationale of research…………….…1
1-2 Literature review…………………..2
1-3 Comments and specific aims…………4
II : Material and Method
2-1 Basic laboratory experiments and sequencing…..5
2-2 Animal experiments………………………………….11
2-3 Human clinical studies…………………………..…13
2-4 Statistics and study approval…………………….16
III : Results
3-1 In vivo experiments………………………………….18
3-2 In vitro experiments…………………………………24
3-3 Human clinical………………………………………..26
IV : Discussion.…………………………………………..28
V : Conclusion………..……………………………………31
Reference…………………..……………………………….32
Figures………………………………………………………40
Tables…………………………..….……………………..67
Appendage………………………….………………………..69
參考文獻 1. Lozano R, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012; 380(9859):2095–2128.
2. WHO. Global Status Report On Alcohol And Health 2014. World Health Organization website. http://www.who.int/substance_abuse/publications/ global_alcohol_report/en/. Accessed April 10, 2017.
3. Bode JC, Bode C, Heidelbach R, Dürr HK, Martini GA. Jejunal microflora in patients with chronic alcohol abuse. Hepatogastroenterology. 1984;31(1):30–34.
4. Yan AW, et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology. 2011;53(1):96–105.
5. Hartmann P, et al. Deficiency of intestinal mucin-2 ameliorates experimental alcoholic liver disease in mice. Hepatology. 2013;58(1):108–119.
6. Keshavarzian A, et al. Evidence that chronic alcohol exposure promotes intestinal oxidative stress, intestinal hyperpermeability and endotoxemia prior to development of alcoholic steatohepatitis in rats. J Hepatol. 2009;50(3):538–547.
7. Mutlu EA, et al. Colonic microbiome is altered in alcoholism. Am J Physiol Gastrointest Liver Physiol. 2012;302(9):G966–G978.
8. Iliev ID, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science. 2012;336(6086):1314–1317.
9. Wang ZK, Yang YS, Stefka AT, Sun G, Peng LH. Review article: fungal microbiota and digestive diseases. Aliment Pharmacol Ther. 2014;39(8):751–766.
10. Iliev ID, Underhill DM. Striking a balance: fungal commensalism versus pathogenesis. Curr Opin Microbiol. 2013;16(3):366–373.
11. Miranda LN, et al. Candida colonization as a source for candidaemia. J Hosp Infect. 2009;72(1):9–16.
12. Papp M, et al. Presence of anti-microbial antibodies in liver cirrhosis — a tell-tale sign of compromised immunity? PLoS One. 2010;5(9):e12957.
13. Park WB, et al. Spontaneous cryptococcal peritonitis in patients with liver cirrhosis. Am J Med. 2006;119(2):169–171.
14. Bartoletti M, et al. Epidemiology and outcomes of bloodstream infection in patients with cirrhosis. J Hepatol. 2014;61(1):51–58.
15. Gustot T, et al. Invasive aspergillosis in patients with severe alcoholic hepatitis. J Hepatol. 2014;60(2):267–274.
16. Hwang SY, et al. Spontaneous fungal peritonitis: a severe complication in patients with advanced liver cirrhosis. Eur J Clin Microbiol Infect Dis. 2014;33(2):259–264.
17. Theel ES, Doern CD. β-D-glucan testing is important for diagnosis of invasive fungal infections. J Clin Microbiol. 2013;51(11):3478–3483.
18. Dambuza IM, Brown GD. C-type lectins in immunity: recent developments. Curr Opin Immunol. 2015;32:21–27.
19. Kankkunen P, Teirilä L, Rintahaka J, Alenius H, Wolff H, Matikainen S. (1,3)-β-glucans activate both dectin-1 and NLRP3 inflammasome in human macrophages. J Immunol. 2010;184(11):6335–6342.
20. Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology. 2014;146(6):1513–1524.
21. Chen P, et al. Supplementation of saturated longchain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice. Gastroenterology. 2015;148(1):203–214.e16.
22. Wang L, et al. Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated microbiota and preventing
bacterial translocation. Cell Host Microbe. 2016;19(2):227–239.
23. Chen P, Stärkel P, Turner JR, Ho SB, Schnabl B. Dysbiosis-induced intestinal inflammation activates tumor necrosis factor receptor I and mediates
alcoholic liver disease in mice. Hepatology. 2015;61(3):883–894.
24. Kobayashi K, Hernandez LD, Galán JE, Janeway CA, Medzhitov R, Flavell RA. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell. 2002;110(2):191–202.
25. Taylor PR, et al. The β-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol. 2002;169(7):3876–3882.
26. Seki E, et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat Med. 2007;13(11):1324–1332.
27. Petrasek J, et al. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J Clin Invest. 2012;122(10):3476–3489.
28. Niemelä O, Parkkila S, Bradford B, Iimuro Y, Pasanen M, Thurman RG. Effect of Kupffer cell inactivation on ethanol-induced protein adducts in the liver. Free Radic Biol Med. 2002;33(3):350–355.
29. Ganesan S, et al. Caspase-8 modulates dectin-1 and complement receptor 3-driven IL-1β production in response to β-glucans and the fungal pathogen, Candida albicans. J Immunol. 2014;193(5):2519–2530.
30. Standaert-Vitse A, et al. Candida albicans is an immunogen for anti-Saccharomyces cerevisiae antibody markers of Crohn’s disease. Gastroenterology.
2006;130(6):1764–1775.
31. Sokol H, et al. Fungal microbiota dysbiosis in IBD [published online ahead of print February 3, 2016]. Gut. https:doi.org/10.1136/gutjnl-2015-310746.
32. Lilly LM, et al. The β-glucan receptor dectin-1 promotes lung immunopathology during fungal allergy via IL-22. J Immunol. 2012;189(7):3653–3660.
33. Szabo G. Gut-liver axis in alcoholic liver disease. Gastroenterology. 2015;148(1):30–36.
34. Kirpich IA, et al. Saturated and unsaturated dietary fats differentially modulate ethanolinduced changes in gut microbiome and metabolome in a mouse model of alcoholic liver disease. Am J Pathol. 2016;186(4):765–776.
35. Du Plessis J, et al. Activated intestinal macrophages in patients with cirrhosis release NO and IL-6 that may disrupt intestinal barrier function. J Hepatol. 2013;58(6):1125–1132.
36. Wang Y, et al. Lactobacillus rhamnosus GG treatment potentiates intestinal hypoxia-inducible factor, promotes intestinal integrity and ameliorates alcohol-induced liver injury. Am J Pathol. 2011;179(6):2866–2875.
37. Yamahiro A, Lau KH, Peaper DR, Villanueva M. Meningitis caused by Candida Dubliniensis in a patient with cirrhosis: a case report
and review of the literature. Mycopathologia. 2016;181(7–8):589–593.
38. Chen SC, et al. Candidaemia with uncommon Candida species: predisposing factors, outcome, antifungal susceptibility, and implications for management. Clin Microbiol Infect. 2009;15(7):662–669.
39. Wang Y, et al. Role of IRAK-M in alcohol induced liver injury. PLoS One. 2013;8(2):e57085.
40. Taylor PR, et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol. 2007;8(1):31–38.
41. Wagner M, Srivastava KK. Decontamination of gnotobiotic mice experimentally monoassociated with Candida albicans. Infect Immun. 1975;12(6):1401–1404.
42. Fouts DE, Torralba M, Nelson KE, Brenner DA, Schnabl B. Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease. J Hepatol. 2012;56(6):1283–1292.
43. Maeda H, et al. Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunol Med Microbiol. 2003;39(1):81–86.
44. Liu CM, et al. FungiQuant: a broad-coverage fungal quantitative real-time PCR assay. BMC Microbiol. 2012;12:255.
45. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79(17):5112–5120.
46. Fouts DE, et al. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PLoS One. 2012;7(11):e48289.
47. Bokulich NA, Mills DA. Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl Environ Microbiol. 2013;79(8):2519–2526.
48. Bokulich NA, Thorngate JH, Richardson PM, Mills DA. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc Natl Acad Sci U S A. 2014;111(1):E139–E148.
49. Schloss PD, et al. Introducing mothur: opensource, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–7541.
50. Fouts DE, et al. Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J Transl Med. 2012;10:174.
51. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–3152.
52. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–1659.
53. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–5267.
54. Tang J, Iliev ID, Brown J, Underhill DM, Funari VA. Mycobiome: Approaches to analysis of intestinal fungi. J Immunol Methods. 2015;421:112–121.
55. Fettweis JM, et al. Species-level classification of the vaginal microbiome. BMC Genomics. 2012;13(suppl 8):S17.
56. Iwaisako K, et al. Protection from liver fibrosis by a peroxisome proliferator-activated receptor δ agonist. Proc Natl Acad Sci U S A. 2012;109(21):E1369–E1376.
57. Kisseleva T, et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci U S A. 2012;109(24):9448–9453.
58. Brydges SD, Broderick L, McGeough MD, Pena CA, Mueller JL, Hoffman HM. Divergence of IL-1, IL-18, and cell death in NLRP3 inflammasomopathies. J Clin Invest. 2013;123(11):4695–4705.
59. Lee SM, Schelcher C, Demmel M, Hauner M, Thasler WE. Isolation of human hepatocytes by a two-step collagenase perfusion procedure. J Vis Exp. 2013;(79):50615.
60. Steiling H, Mühlbauer M, Bataille F, Schölmerich J, Werner S, Hellerbrand C. Activated hepatic stellate cells express keratinocyte growth factor in chronic liver disease. Am J Pathol. 2004;165(4):1233–1241.
61. Thasler WE, Weiss TS, Schillhorn K, Stoll PT, Irrgang B, Jauch KW. Charitable state-controlled foundation human tissue and cell research: ethic and legal aspects in the supply of surgically removed human tissue for research in the academic and commercial sector in Germany. Cell Tissue Bank. 2003;4(1):49–56.
62. Yang AM, Wen LL, Yang CS, Wang SC, Chen CS, Bair MJ. Interleukin 10 promoter haplotype is associated with alcoholic liver cirrhosis in Taiwanese patients. Kaohsiung J Med Sci. 2014; 30(6):291–298.
指導教授 陳健生(Chien-shen Chen) 審核日期 2017-6-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明