參考文獻 |
[1]. A.C. Lund and C. A. Schuh, “Topological and chemical arrangement of binary alloys during severe deformation”, Journal of Applied Physics, vol. 95 , 2004, pp.4815-4822.
[2]. D.R. Uhlmann, “A kinetic treatment of glass formation”, Journal of Non-Crystalline Solids, vol. 7 , 1972, pp.337-348.
[3]. BURTON, Amorphous Metallic Alloys 1st edition, Butterworths-Heinemann, London, 1983
[4]. Z.P. Lu, C.T. Liu, “A new glass-forming ability criterion for bulk metallic glasses”, Acta Materialia, vol. 50, 2002, pp.3501-3512.
[5]. X. H. Du, J. C. Huang, C. T. Liu, and Z. P. Lu, “New criterion of glass forming ability for bulk metallic glasses”, Journal of applied physics, vol. 101, 2007, pp.086108.
[6]. W.L. Johnson, “Fundamental Aspects of Bulk Metallic Glass Formation in Multicomponent Alloys”, Materials Science Forum, vol. 225-227, 1996, pp.35-50.
[7]. A. Inoue, H. Koshiba, T. Zhang and A. Makino, “Wide supercooled liquid region and soft magnetic properties of Fe56Co7Ni7Zr0–10Nb (or Ta)0–10B20 amorphous alloys”, Applied Physics Letters, vol. 83, 1998, pp.1967-1974.
[8]. A. Inoue and K. Hashimoto, “Amorphous and Nanocrystalline Materials”, Springer, 2001
[9]. B. Guan, X. Shi, Z. Dan, G. Xie, M. Niinomi, F. Qin, “Corrosion behavior, mechanical properties and cell cytotoxity of Zr-based bulk metallic glasses”, Intermetallics, vol. 72, 2016, pp.69-75.
[10]. T.C. Chieh, J. Chu, C.T. Liu and J.K. Wu, “Corrosion of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glasses in aqueous solutions”, Materials Letters, vol. 57, 2003, pp.3022-3025.
[11]. H. Habazaki, H. Ukai, K. Izumiya and K. Hashimoto, “Corrosion behaviour of amorphous Ni-Cr-Nb-P-B bulk alloys in 6M HCl solution”, Materials Science and Engineering, vol. 318, 2001, pp.77-86.
[12]. W. Zhou, W.P. Weng, J.X. Hou, “Glass-forming Ability and Corrosion Resistance of Zr-Cu-Al-Co Bulk Metallic Glass”, Journal of Materials Science & Technology”, vol. 32, 2016, pp.349-354.
[13]. H.F. Tian, J.W. Qiaoa, H.J. Yang, Y.S. Wang, P.K. Liaw, A.D. Lan, “The corrosion behavior of in-situ Zr-based metallic glass matrix composites in different corrosive media”, Applied Surface Science, vol. 363, 2016, pp.37-43.
[14]. W.H. Peter, R.A. Buchanan, C.T. Liu, P.K. Liaw, M.L. Morrison, J.A. Horton, C.A. Carmichael Jr. and J.L. Wright, “Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state”, Intermetallics, vol. 10, 2002, pp.1157-1162.
[15]. C.A.C. Sousa and C.S. Kiminami, “Crytallization and corrosion resistance of amorphous FeCuNbSiB”, Journal of Non-Crystalline Solids, vol. 219, 1997, pp.155-159.
[16]. M. Heilmaier, “Deformation behavior of Zr-based metallic glasses”, Materials Processing Technology, vol. 117, 2001, pp.374-380.
[17]. J. Lee, M.L. Liou, J.G. Duh, “The development of a Zr-Cu-Al-Ag-N thin film metallic glass coating in pursuit of improved mechanical, corrosion, and antimicrobial property for bio-medical application”, Surface and Coatings Technology, vol. 310, 2017, pp.214-222
[18]. C.N. Kuo, J.C. Huang, J.B. Li, J.S.C. Jang, C.H. Lin, T.G. Nieh, “Effects of B2 precipitate size on transformation-induced plasticity of Cu–Zr–Al glassy alloys”, Journal of Alloys and Compounds, vol. 590, 2014, pp.453-458.
[19]. J.S.C. Jang, J.Y. Ciou, J.C. Huang and X.H. Du, “Enhanced mechanical performance of Mg metallic glass with porous Mo particles”, Applied Physics Letters, vol. 92, 2008, pp.11930.
[20]. Y. Wu, Y. Xiao, G. Chen, C.T. Liu and Z. Lu, “Bulk Metallic Glass Composites with Transformatiom Mediated Work-Hardening and Ductility”, Advanced Materials, vol. 22, 2010, pp.2770-2773.
[21]. A. Brenner, Electrodeposition of Alloys, Academic Press, 1963
[22]. W. Klement, R.H. Willens, and P. Duwez, “Non-crystalline Structure in solidified Gold-Silicon alloys,” Nature, vol. 187, 1960, pp.869-870.
[23]. H.S. Chen and C.E. Miller, “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Review of Scientific Instruments, vol. 41, 1970, pp.1237-1238.
[24]. C.C. Koch, O.B. Cavin, C.G. McKamey, and J.O. Scarbrough, “Preparation of amorphous Ni60Nb40 by mechanical alloying”, Applied Physics Letters, vol. 43, 1983, pp.1017-1019.
[25]. A. Inoue, A. Kato, T. Zhang, S.G. Kim and T. Masumoto, “Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method”, Materials Transactions JIM, vol. 32, 1991, pp.609-616.
[26]. A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, “Mg–Cu–Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method”, Materials Transactions JIM, vol. 33, 1992, pp.937-945.
[27]. M.K. Miller, P. Liaw, “Bulk Metallic Glasses-An Overview”, Springer , 2008.
[28]. A. Inoue, N. Nishiyama, H.M. Kimura, “Preparation and Thermal Stability of Bulk Amorphous Pd40Cu30Ni10P20 Alloy Cylinder of 72 mm in Diameter”, Materials Transactions JIM, vol. 38, 1997, pp.179-183.
[29]. A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Materials Science and Engineering, vol. 226-228, 1997, pp.357-363.
[30]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Materials Transactions JIM, vol. 36, 1995, pp.866-875.
[31]. A. Inoue, T. Zhang and A. Takeuchi, “Ferrous and nonferrous bulk amorphous alloys”, Materials Science Forum, vol. 269-272, 1998, pp.855-864.
[32]. A. Inoue, A. Takeuchi and T. Zhang, “Ferromagnetic bulk amorphous alloys”, Metallurgical and Materials Transactions, vol. 29, 1998, pp.1779-1793.
[33]. R.E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles 3rd Edition, PWS-KENT Publishing Company, Boston, 1994
[34]. D.R. Gaskell, Introduction to the Thermodynamics of Materials 4th Edition, Taylor & Francis, US, 2009
[35]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Materials Transactions, JIM, vol. 36, 1995, pp.866-875.
[36]. K.L. Chopra, “Thin Film Phenomena”, McGraw-Hill, 1969
[37]. Z.P. Lu, C.T. Liu, “Role of minor alloying additions in formationof bulk metallic glasses: A Review”, Journal of Material Science, vol. 39, 2004 pp.3965-3974.
[38]. C.C. Hays, C.P. Kim, W.L. Johnson, “Improved mechanical behavior of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions”, Materials Science and Engineering, vol. 304-306, pp.650-655.
[39]. J.S.C. Jang, S.R. Jian, D.J. Pan, Y.H. Wu, J.C. Huang, T.G. Nieh, “Thermal and mechanical characterizations of a Zr-based bulk metallic glass composite toughened by in-situ precipitated Ta-rich particles”, Intermetallics, vol. 18, pp.560-564.
[40]. C.N. Kuo, J.C. Huang, X.H. Du, X.J. Liu, T.G. Nieh, “Comparison of mechanical response in CuZrAl–V and CuZrAl–Co bulk metallic glass composites”, Journal of Alloys and Compounds, vol. 586, pp.S14-S19.
[41]. J.S.C. Jang, J.Y. Ciou, T.H. Li, J.C. Huang, T.G. Nieh, “Dispersion toughening of Mg-based bulk metallic glass reinforced with porous Mo particles”, Intermetallics, vol. 18, pp.451-458.
[42]. J.B. Li, J.S.C. Jang, S.R. Jian, K.W. Chen, J.F. Lin, J.C. Huang, “Plasticity improvement of ZrCu-based bulk metallic glass by ex situ dispersed Ta particles”, Materials Science and Engineering A, vol. 528, pp.8244-8248.
[43]. 陳世瑋,“不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2 相分布及其機械性質影響之研究”,國立中央大學機械工程研究所碩士論文,2014。
[44]. A.Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, vol. 48, 2000, pp.279-306.
[45]. J.S.C. Jang, I.H. Wang, L.J. Chang, G.J. Chen, T.H. Hung, J.C. Huang, “Crystallization kinetics and thermal stability of the Zr60Al7.5Cu17.5Ni10Si4B1 amorphous alloy studied by isothermal differential scanning calorimetry and transmission electron microscopy”, Materials Science and Engineering A, vol. 449-451, 2007, pp.511-516.
[46]. T.A. Waniuk, J. Schroers and W.L. Johnson, “Critical cooling rate and thermal stability of Zr-Ti-Cu-Ni-Be alloys”, Applied Physics Letters, vol. 78, 2001, pp.1213-1215.
[47]. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, “High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems”, Acta Materialia, vol. 49, 2001, pp.2645-2652.
[48]. A. Inoue, “Stabilization of Metallic Super Cooled Liquid and Bulk Amorphous Alloys”, Acta Materials, vol. 48, 2000, pp.279-306.
[49]. T.D. Shen and R.B. Schwarz, “Bulk amorphous Pd-Ni-Fe-P alloys: preparation and characterization”, Journal of Materials Research, vol. 14, 1999, pp.2107-2115.
[50]. T.D. Shen, R.B. Schwarz and J.D. Thompson, “Paramagnetism, superparamagnetism, and spin-glass behavior in bulk amorphous Pd-Ni-Fe-P alloys”, Applied Physics Letters, vol. 85, 1999, pp.4110-4120.
[51]. A. Inoue, K. Nakazato, Y. Kawamura, A.P. Tsai and T. Masumoto, “Effect of Cu or Ag on the formation of coexistent nanoscale Al particles in Al-Ni-M-Ce (M=Cu or Ag) amorphous alloys”, Materials Transactions JIM, vol. 35, 1994, pp.95-102.
[52]. 鄭振東,非晶質金屬漫談,建宏出版社,1990
[53]. A.S. Argon, “Plastic deformation in metallic glasses”, Acta Metallurgaica, vol. 27, 1979, pp.47-58.
[54]. C.L. Qiu, L. Liu, M. Sun, S.M. Zhang, “The effect of Nb addition on mechanical properties, corrosion behavior, and metal-ion release of Zr-Al-Cu-Ni bulk metallic glasses in artificial body fluid”, Journal of Biomedical Materials Research, vol. 75, 2005, pp.950-956.
[55]. A. Inoue, B.L. Shen, A.R. Yavari, A.L. Greer, “Mechanical properties of Fe-based bulk glassy alloys in Fe–B–Si–Nb and Fe–Ga–P–C–B–Si systems”, Journal of Materials Research, vol. 18, 2003, pp.1478-1492.
[56]. F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, T. Antretter, “A new view on transformation induced plasticity (TRIP)”, International Journal of Plasticity, vol. 16, 2000, pp.723-748.
[57]. WorldAutoSteel, Transformation-Induced Plasticity (TRIP) Steel.
[58]. C.P. Frick, T.W. Lang, K. Spark, K. Gall, “Stress-induced martensitic transformations and shape memory at nanometer scales”, Acta Materialia, vol. 54, 2006, pp.2223-2234.
[59]. C.J. Li, J. Tana, X.K. Zhu, Y. Zhang, M. Stoica, U. Kühn, J. Eckert, “On the transformation-induced work-hardening behavior of Zr47.5Co47.5Al5 ultrafine-grained alloy”, Intermetallics, vol. 35, 2013, pp.116-119.
[60]. B.A. Sun, K.K. Song, S. Pauly, P. Gargarella, J. Yi, G. Wang, C.T. Liu, J. Eckert, Y. Yang, “ransformation-mediated plasticity in CuZr based metallic glass composites: A quantitative mechanistic understanding”, International Journal of Plasticity, vol. 85, 2016, pp.34-51.
[61]. J. W. Seo and D. Schryvers, “TEM investigation of the microstructure and defects of CuZr martensite. Part Ι:Morphology and twin systems ”, Acta material, vol. 4, 1998, pp.1165-1175.
[62]. B.Y. Wu, Y. Xiao, G. Chen, C.T. Liu, Z. Lu, “Bulk Metallic Glass Composites with Transformation-Mediated Work-Hardening and Ductility ”, Adv. Mater, vol. 22, 2010, pp.2770-2773. |