參考文獻 |
1. Ge, et al., Electrochemical Intercalation of Sodium in Graphite. Solid State Ionics, 1988. 28: P. 1172-1175.
2. Doeff, et al., Electrochemical Insertion of Sodium into Carbon. Journal of the Electrochemical Society, 1993. 140(12): P. L169-L170.
3. Pan, et al., Room-temperature Stationary Sodium-ion Batteries for Large-scale Electric Energy Storage. Energy & Environmental Science, 2013. 6(8): P. 2338-2360.
4. Slater, et al., Sodium‐ion Batteries. Advanced Functional Materials, 2013. 23(8): P. 947-958.
5. Asher, et al., A Lamellar Compound of Sodium and Graphite. Journal of Inorganic and Nuclear Chemistry, 1959. 10(3-4): P. 238-249.
6. Mochida, et al., Anodic Performance and Insertion Mechanism of Hard Carbons Prepared from Synthetic Isotropic Pitches. Carbon, 2001. 39(3): P. 399-410.
7. Yao, et al., Carbon Based Anode Materials for Lithium-ion Batteries. 2003.
8. Alcantara, et al., Characterisation of Mesocarbon Microbeads (MCMB) as Active Electrode Material in Lithium and Sodium Cells. Carbon, 2000. 38(7): P. 1031-1041.
9. Stevens, et al., High Capacity Anode Materials for Rechargeable Sodium‐ion Batteries. Journal of the Electrochemical Society, 2000. 147(4): P. 1271-1273.
10. Stevens, et al., An in Situ Small‐angle X‐ray Scattering Study of Sodium Insertion into a Nanoporous Carbon Anode Material within an Operating Electrochemical Cell. Journal of the Electrochemical Society, 2000. 147(12): P. 4428-4431.
11. Komaba, et al., Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐carbon Electrodes and Application to Na‐ion Batteries. Advanced Functional Materials, 2011. 21(20): P. 3859-3867.
12. Tang, et al., Hollow Carbon Nanospheres with Superior Rate Capability for Sodium‐based Batteries. Advanced Energy Materials, 2012. 2(7): P. 873-877.
13. Cao, et al., Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications. Nano Letters, 2012. 12(7): P. 3783-3787.
14. Gotoh, et al., NMR Study for Electrochemically Inserted Na in Hard Carbon Electrode of Sodium Ion Battery. Journal of Power Sources, 2013. 225: P. 137-140.
15. Prabakar, et al., Nanoporous Hard Carbon Anodes for Improved Electrochemical Performance in Sodium Ion Batteries. Electrochimica Acta, 2015. 161: P. 23-31.
16. Li, et al., Amorphous Monodispersed Hard Carbon Micro-spherules Derived from Biomass as a High Performance Negative Electrode Material for Sodium-ion Batteries. Journal of Materials Chemistry A, 2015. 3(1): P. 71-77.
17. Bommier, et al., Predicting Capacity of Hard Carbon Anodes in Sodium-ion Batteries Using Porosity Measurements. Carbon, 2014. 76: P. 165-174.
18. Li, et al., Preparation of Nitrogen-and Phosphorous Co-doped Carbon Microspheres and their Superior Performance as Anode in Sodium-ion Batteries. Carbon, 2016. 99: P. 556-563.
19. Wu, et al., Apple‐biowaste‐derived Hard Carbon as a Powerful Anode Material for Na‐ion Batteries. Chemelectrochem, 2016. 3(2): P. 292-298.
20. Lotfabad, et al., High-density Sodium and Lithium Ion Battery Anodes from Banana Peels. Acs Nano, 2014. 8(7): P. 7115-7129.
21. Lotfabad, et al., Origin of Non-SEI Related Coulombic Efficiency Loss in Carbons Tested against Na and Li. Journal of Materials Chemistry A, 2014. 2(46): P. 19685-19695.
22. Hong, et al., Biomass Derived Hard Carbon Used as a High Performance Anode Material for Sodium Ion Batteries. Journal of Materials Chemistry A, 2014. 2(32): P. 12733-12738.
23. Sun, et al., Facile Synthesis of High Performance Hard Carbon Anode Materials for Sodium Ion Batteries. Journal of Materials Chemistry A, 2015. 3(41): P. 20560-20566.
24. Wang, et al., Biomass Derived Hierarchical Porous Carbons as High-performance Anodes for Sodium-ion Batteries. Electrochimica Acta, 2016. 188: P. 103-110.
25. Luo, et al., Carbon Nanofibers Derived from Cellulose Nanofibers as a Long-life Anode Material for Rechargeable Sodium-ion Batteries. Journal of Materials Chemistry A, 2013. 1(36): P. 10662-10666.
26. Shen, et al., Chemically Crushed Wood Cellulose Fiber towards High-performance Sodium-ion Batteries. ACS Applied Materials & Interfaces, 2015. 7(41): P. 23291-23296.
27. Simone, et al., Hard Carbon Derived from Cellulose as Anode for Sodium Ion Batteries: Dependence of Electrochemical Properties on Structure. Journal of Energy Chemistry, 2016. 25(5): P. 761-768.
28. Jin, et al., Lignin-based Electrospun Carbon Nanofibrous Webs as Free-standing and Binder-free Electrodes for Sodium Ion Batteries. Journal of Power Sources, 2014. 272: P. 800-807.
29. Li, et al., A Superior Low-cost Amorphous Carbon Anode Made from Pitch and Lignin for Sodium-ion Batteries. Journal of Materials Chemistry A, 2016. 4(1): P. 96-104.
30. Yan, et al., Nitrogen-doped Carbon Microspheres Derived from Oatmeal as High Capacity and Superior Long Life Anode Material for Sodium Ion Battery. Electrochimica Acta, 2016. 191: P. 385-391.
31. Meng, et al., Trash to Treasure: From Harmful Algal Blooms to High-performance Electrodes for Sodium-ion Batteries. Environmental Science & Technology, 2015. 49(20): P. 12543-12550.
32. Pagani, et al., Forecasting Sugarcane Yields Using Agro-climatic Indicators and Canegro Model: A Case Study in the Main Production Region in Brazil. Agricultural Systems, 2017. 154: P. 45-52.
33. Dou, et al., Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for Sodium‐ion Batteries. Chemsuschem, 2017.
34. Ou, et al., Nitrogen-doped Porous Carbon Derived from Horn as an Advanced Anode Material for Sodium Ion Batteries. Microporous and Mesoporous Materials, 2017. 237: P. 23-30.
35. Dahbi, et al., Synthesis of Hard Carbon from Argan Shells for Na-ion Batteries. Journal of Materials Chemistry A, 2017.
36. Hao, et al., Rich Sulfur Doped Porous Carbon Materials Derived from Ginkgo Leaves for Multiple Electrochemical Energy Storage Devices. Journal of Materials Chemistry A, 2017. 5(5): P. 2204-2214.
37. Wang, et al., Kelp-derived Hard Carbons as Advanced Anode Materials for Sodium-ion Batteries. Journal of Materials Chemistry A, 2017. 5(12): P. 5761-5769.
38. Zhang, et al., Antimony/Porous Biomass Carbon Nanocomposites as High‐capacity Anode Materials for Sodium‐ion Batteries. Chemistry–an Asian Journal, 2017. 12(1): P. 116-121.
39. Wang, et al., Superior Sodium Storage in 3D Interconnected Nitrogen and Oxygen Dual‐doped Carbon Network. Small, 2016. 12(19): P. 2559-2566.
40. Zheng, et al., Micro-nano Structure Hard Carbon as a High Performance Anode Material for Sodium-ion Batteries. Scientific Reports, 2016. 6.
41. Zheng, et al., Enhanced Performance by Enlarged Nano-pores of Holly Leaf-derived Lamellar Carbon for Sodium-ion Battery Anode. Scientific Reports, 2016. 6.
42. Zhang, et al., Lithium and Sodium Storage in Highly Ordered Mesoporous Nitrogen-doped Carbons Derived from Honey. Journal of Power Sources, 2016. 335: P. 20-30.
43. Liu, et al., A Waste Biomass Derived Hard Carbon as a High-performance Anode Material for Sodium-ion Batteries. Journal of Materials Chemistry A, 2016. 4(34): P. 13046-13052.
44. Zhu, et al., Hard Carbon Fibers Pyrolyzed from Wool as High-performance Anode for Sodium-ion Batteries. JOM, 2016. 68(10): P. 2579-2584.
45. Selvamani, et al., Garlic Peel Derived High Capacity Hierarchical N-doped Porous Carbon Anode for Sodium/Lithium Ion Cell. Electrochimica Acta, 2016. 190: P. 337-345.
46. Li, et al., Hard Carbon Microtubes Made from Renewable Cotton as High‐performance Anode Material for Sodium‐ion Batteries. Advanced Energy Materials, 2016. 6(18).
47. Zhang, et al., High Temperature Carbonized Grass as a High Performance Sodium Ion Battery Anode. ACS Applied Materials & Interfaces, 2016. 9(1): P. 391-397.
48. Wang, et al., Fluorine-doped Carbon Particles Derived from Lotus Petioles as High-performance Anode Materials for Sodium-ion Batteries. The Journal of Physical Chemistry C, 2015. 119(37): P. 21336-21344.
49. Lv, et al., Carbonaceous Photonic Crystals as Ultralong Cycling Anodes for Lithium and Sodium Batteries. Journal of Materials Chemistry A, 2015. 3(26): P. 13786-13793.
50. Lv, et al., Peanut Shell Derived Hard Carbon as Ultralong Cycling Anodes for Lithium and Sodium Batteries. Electrochimica Acta, 2015. 176: P. 533-541.
51. Yun, et al., Sodium‐ion Storage in Pyroprotein‐based Carbon Nanoplates. Advanced Materials, 2015. 27(43): P. 6914-6921.
52. Li, et al., Recycling Chicken Eggshell Membranes for High-capacity Sodium Battery Anodes. Rsc Advances, 2014. 4(92): P. 50950-50954.
53. Ding, et al., Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes. ACS Nano, 2013. 7(12): P. 11004-11015.
54. Emaga, et al., Dietary Fibre Components and Pectin Chemical Features of Peels during Ripening in Banana and Plantain Varieties. Bioresource Technology, 2008. 99(10): P. 4346-4354.
55. Dahn, et al., Mechanisms for Lithium Insertion in Carbonaceous Materials. Science, 1995. 270(5236): P. 590.
56. Wandee, et al., Enrichment of Rice Noodles with Fibre‐rich Fractions Derived from Cassava Pulp and Pomelo Peel. International Journal of Food Science & Technology, 2014. 49(11): P. 2348-2355.
57. Demirbas, et al., Combustion Characteristics of Different Biomass Fuels. Progress in Energy and Combustion Science, 2004. 30(2): P. 219-230.
58. Jin, et al., Electrochemical Performance of Electrospun Carbon Nanofibers as Free-standing and Binder-free Anodes for Sodium-ion and Lithium-ion Batteries. Electrochimica Acta, 2014. 141: P. 302-310.
59. Górka, et al., Recent Progress in Design of Biomass-derived Hard Carbons for Sodium Ion Batteries. C, 2016. 2(4): P. 24.
60. Irisarri, et al., Review—Hard Carbon Negative Electrode Materials for Sodium-ion Batteries. Journal of the Electrochemical Society, 2015. 162(14): P. A2476-A2482.
61. Gibaud, et al., A Small Angle X-ray Scattering Study of Carbons Made from Pyrolyzed Sugar. Carbon, 1996. 34(4): P. 499-503.
62. Liu, et al., Mechanism of Lithium Insertion in Hard Carbons Prepared by Pyrolysis of Epoxy Resins. Carbon, 1996. 34(2): P. 193-200.
63. Xing, et al., Optimizing Pyrolysis of Sugar Carbons for Use as Anode Materials in Lithium‐ion Batteries. Journal of the Electrochemical Society, 1996. 143(10): P. 3046-3052.
64. Buiel, et al., Model of Micropore Closure in Hard Carbon Prepared from Sucrose. Carbon, 1999. 37(9): P. 1399-1407.
65. Berger, et al., Insertion of Sodium and Potassium in Some Hard Carbons. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE C, 1970. 271(14): P. 837-&.
66. Ponrouch, et al., High Capacity Hard Carbon Anodes for Sodium Ion Batteries in Additive Free Electrolyte. Electrochemistry Communications, 2013. 27: P. 85-88.
67. Ponrouch, et al., In Search of an Optimized Electrolyte for Na-ion Batteries. Energy & Environmental Science, 2012. 5(9): P. 8572-8583.
68. Fong, et al., Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells. Journal of the Electrochemical Society, 1990. 137(7): P. 2009-2013.
69. Aurbach, et al., Recent Studies on the Correlation between Surface Chemistry, Morphology, Three-dimensional Structures and Performance of Li and Li-C Intercalation Anodes in Several Important Electrolyte Systems. Journal of Power Sources, 1997. 68(1): P. 91-98.
70. Yamada, et al., Review—Superconcentrated Electrolytes for Lithium Batteries. Journal of the Electrochemical Society, 2015. 162(14): P. A2406-A2423.
71. Xu, et al., Nonaqueous Liquid Electrolytes for Lithium-based Rechargeable Batteries. Chemical Reviews, 2004. 104(10): P. 4303-4418.
72. Kanamura, et al., Electrochemical Oxidation of Propylene Carbonate (Containing Various Salts) on Aluminium Electrodes. Journal of Power Sources, 1995. 57(1-2): P. 119-123.
73. Wang, et al., Inhibition of Anodic Corrosion of Aluminum Cathode Current Collector on Recharging in Lithium Imide Electrolytes. Electrochimica Acta, 2000. 45(17): P. 2677-2684.
74. Ding, et al., Na [FSA]-[C 3 C 1 Pyrr][FSA] Ionic Liquids as Electrolytes for Sodium Secondary Batteries: Effects of Na Ion Concentration and Operation Temperature. Journal of Power Sources, 2014. 269: P. 124-128.
75. Guo, et al., High-performance Sodium Batteries with the 9, 10-Anthraquinone/CMK-3 Cathode and an Ether-based Electrolyte. Chemical Communications, 2015. 51(50): P. 10244-10247.
76. Chen, et al., Ionic Liquid Electrolytes with High Sodium Ion Fraction for High-rate and Long-life Sodium Secondary Batteries. Journal of Power Sources, 2016. 332: P. 51-59.
77. Lee, et al., Ultraconcentrated Sodium Bis (Fluorosulfonyl) Imide-based Electrolytes for High-performance Sodium Metal Batteries. ACS Applied Materials & Interfaces, 2017. 9(4): P. 3723-3732.
78. Mckinnon, et al., How to Reduce the Cointercalation of Propylene Carbonate in Li X Zrs2 and Other Layered Compounds. Journal of the Electrochemical Society, 1985. 132(2): P. 364-366.
79. Jeong, et al., Electrochemical Intercalation of Lithium Ion within Graphite from Propylene Carbonate Solutions. Electrochemical and Solid-State Letters, 2003. 6(1): P. A13-A15.
80. Jeong, et al., Interfacial Reactions between Graphite Electrodes and Propylene Carbonate-based Solutions: Electrolyte-concentration Dependence of Electrochemical Lithium Intercalation Reaction. Journal of Power Sources, 2008. 175(1): P. 540-546.
81. Yamada, et al., Electrochemical Lithium Intercalation into Graphite in Dimethyl Sulfoxide-based Electrolytes: Effect of Solvation Structure of Lithium Ion. The Journal of Physical Chemistry C, 2010. 114(26): P. 11680-11685.
82. Yamada, et al., A Superconcentrated Ether Electrolyte for Fast-charging Li-ion Batteries. Chemical Communications, 2013. 49(95): P. 11194-11196.
83. Yamada, et al., Unusual Stability of Acetonitrile-based Superconcentrated Electrolytes for Fast-charging Lithium-ion Batteries. Journal of the American Chemical Society, 2014. 136(13): P. 5039-5046.
84. Yamada, et al., General Observation of Lithium Intercalation into Graphite in Ethylene-carbonate-free Superconcentrated Electrolytes. ACS Applied Materials & Interfaces, 2014. 6(14): P. 10892-10899.
85. Nie, et al., Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF6 in Propylene Carbonate. The Journal of Physical Chemistry C, 2013. 117(48): P. 25381-25389.
86. Liu, et al., In Situ Observation of Electrolyte-concentration-dependent Solid Electrolyte Interphase on Graphite in Dimethyl Sulfoxide. ACS Applied Materials & Interfaces, 2015. 7(18): P. 9573-9580.
87. Petibon, et al., The Use of Ethyl Acetate as a Sole Solvent in Highly Concentrated Electrolyte for Li-ion Batteries. Electrochimica Acta, 2015. 154: P. 287-293.
88. Moon, et al., Mechanism of Li Ion Desolvation at the Interface of Graphite Electrode and Glyme–Li Salt Solvate Ionic Liquids. The Journal of Physical Chemistry C, 2014. 118(35): P. 20246-20256.
89. Moon, et al., Solvent Activity in Electrolyte Solutions Controls Electrochemical Reactions in Li-ion and Li-sulfur Batteries. The Journal of Physical Chemistry C, 2015. 119(8): P. 3957-3970.
90. Aurbach, et al., A Short Review of Failure Mechanisms of Lithium Metal and Lithiated Graphite Anodes in Liquid Electrolyte Solutions. Solid State Ionics, 2002. 148(3): P. 405-416.
91. Jeong, et al., Suppression of Dendritic Lithium Formation by Using Concentrated Electrolyte Solutions. Electrochemistry Communications, 2008. 10(4): P. 635-638.
92. Suo, et al., A New Class of Solvent-in-salt Electrolyte for High-energy Rechargeable Metallic Lithium Batteries. Nature Communications, 2013. 4: P. 1481.
93. Qian, et al., High Rate and Stable Cycling of Lithium Metal Anode. Nature Communications, 2015. 6.
94. Brouillette, et al., Stable Solvates in Solution of Lithium Bis (Trifluoromethylsulfone) Imide in Glymes and Other Aprotic Solvents: Phase Diagrams, Crystallography and Raman Spectroscopy. Physical Chemistry Chemical Physics, 2002. 4(24): P. 6063-6071.
95. Henderson, et al., Glyme− Lithium Bis (Trifluoromethanesulfonyl) Imide and Glyme− Lithium Bis (Perfluoroethanesulfonyl) Imide Phase Behavior and Solvate Structures. Chemistry of Materials, 2005. 17(9): P. 2284-2289.
96. Henderson, et al., Glyme− Lithium Salt Phase Behavior. The Journal of Physical Chemistry B, 2006. 110(26): P. 13177-13183.
97. Seo, et al., Electrolyte Solvation and Ionic Association. Journal of the Electrochemical Society, 2012. 159(5): P. A553-A565.
98. Seo, et al., Electrolyte Solvation and Ionic Association II. Acetonitrile-lithium Salt Mixtures: Highly Dissociated Salts. Journal of the Electrochemical Society, 2012. 159(9): P. A1489-A1500.
99. Han, et al., Electrolyte Solvation and Ionic Association IV. Acetonitrile-lithium difluoro (oxalato) borate (LiDFOB) Mixtures. Journal of the Electrochemical Society, 2013. 160(11): P. A2100-A2110.
100. Han, et al., Electrolyte Solvation and Ionic Association V. Acetonitrile-Lithium Bis (Fluorosulfonyl) Imide (LiFSI) Mixtures. Journal of the Electrochemical Society, 2014. 161(14): P. A2042-A2053.
101. Borodin, et al., Electrolyte Solvation and Ionic Association VI. Acetonitrile-Lithium Salt Mixtures: Highly Associated Salts Revisited. Journal of the Electrochemical Society, 2015. 162(4): P. A501-A510.
102. Hyodo, et al., Raman Intensity Study of Local Structure in Non-aqueous Electrolyte Solutions—I. Cation-solvent Interaction in LiClO4/Ethylene Carbonate. Electrochimica Acta, 1989. 34(11): P. 1551-1556.
103. Kunz, et al., Lithium Bromide in Acetonitrile: Thermodynamics, Theory, and Simulation. Journal of Solution Chemistry, 1991. 20(9): P. 875-891.
104. Seo, et al., Li+ Cation Coordination by Acetonitrile—Insights from Crystallography. RSC Advances, 2012. 2(21): P. 8014-8019.
105. Mcowen, et al., Concentrated Electrolytes: Decrypting Electrolyte Properties and Reassessing Al Corrosion Mechanisms. Energy & Environmental Science, 2014. 7(1): P. 416-426.
106. Ueno, et al., Li+ Solvation in Glyme–Li Salt Solvate Ionic Liquids. Physical Chemistry Chemical Physics, 2015. 17(12): P. 8248-8257.
107. Sodeyama, et al., Sacrificial Anion Reduction Mechanism for Electrochemical Stability Improvement in Highly Concentrated Li-salt Electrolyte. The Journal of Physical Chemistry C, 2014. 118(26): P. 14091-14097.
108. Röschenthaler, et al., A Stable Tetraalkoxy (Hydroxy) Phosphorane and Phosphorane Oxide Anion by Hydrolysis of Tetraalkoxy (Halogen) Phosphoranes. Angewandte Chemie International Edition in English, 1982. 21(3): P. 208-208.
109. Seo, et al., Electrolyte Solvation and Ionic Association III. Acetonitrile-Lithium Salt Mixtures–Transport Properties. Journal of the Electrochemical Society, 2013. 160(8): P. A1061-A1070.
110. Johansson, et al., Electronic Structure Calculations on Lithium Battery Electrolyte Salts. Physical Chemistry Chemical Physics, 2007. 9(12): P. 1493-1498.
111. Pappenfus, et al., Complexes of Lithium Imide Salts with Tetraglyme and their Polyelectrolyte Composite Materials. Journal of the Electrochemical Society, 2004. 151(2): P. A209-A215.
112. Yoshida, et al., Oxidative-stability Enhancement and Charge Transport Mechanism in Glyme–Lithium Salt Equimolar Complexes. Journal of the American Chemical Society, 2011. 133(33): P. 13121-13129.
113. Matsumoto, et al., Suppression of Aluminum Corrosion by Using High Concentration LiTFSI Electrolyte. Journal of Power Sources, 2013. 231: P. 234-238.
114. Yoshida, et al., Change from Glyme Solutions to Quasi-Ionic Liquids for Binary Mixtures Consisting of Lithium Bis (Trifluoromethanesulfonyl) Amide and Glymes. The Journal of Physical Chemistry C, 2011. 115(37): P. 18384-18394.
115. Dokko, et al., Solvate Ionic Liquid Electrolyte for Li–S Batteries. Journal of the Electrochemical Society, 2013. 160(8): P. A1304-A1310.
116. Stevens, et al., The Mechanisms of Lithium and Sodium Insertion in Carbon Materials. Journal of the Electrochemical Society, 2001. 148(8): P. A803-A811.
117. Zhang, et al., Correlation between Microstructure and Na Storage Behavior in Hard Carbon. Advanced Energy Materials, 2016. 6(1).
118. Bommier, et al., New Mechanistic Insights on Na-ion Storage in Nongraphitizable Carbon. Nano Letters, 2015. 15(9): P. 5888-5892.
119. Vogt, et al., Understanding the Interaction of the Carbonates and Binder in Na-ion Batteries: A Combined Bulk and Surface Study. Chemistry of Materials, 2015. 27(4): P. 1210-1216.
120. Gibson, et al., The Hierarchical Structure and Mechanics of Plant Materials. Journal of the Royal Society Interface, 2012: P. Rsif20120341.
121. Pandey, et al., Biotechnological Potential of Agro-industrial Residues. I: Sugarcane Bagasse. Bioresource Technology, 2000. 74(1): P. 69-80.
122. Hoareau, et al., Sugar Cane Bagasse and Curaua Lignins Oxidized by Chlorine Dioxide and Reacted with Furfuryl Alcohol: Characterization and Stability. Polymer Degradation and Stability, 2004. 86(3): P. 567-576.
123. Bakandritsos, et al., High Surface Area Montmorillonite− Carbon Composites and Derived Carbons. Chemistry of Materials, 2004. 16(8): P. 1551-1559. |