摘要(英) |
This thesis mainly analyzes the morphological, structural and optical properties of InN quantum dots(QDs). First, we estimate the size and height of QDs from morphological properties, and then we discuss the material strain and the variation between heights and sizes of QDs from structural properties. Finally, we talk about the relation between blue shift of small QDs and quantum efficiency from optical properties.
InN QDs grows with the use of MOCVD. Then we use Si wafer as substrate to grow InN QDs, and then AlN buffer layer will grow under high temperature(about 1050 oC) onto substrate, finally, InN QDs will grow internally onto buffer layer.
The way we measure the morphology of QDs is by using AFM and SEM. We estimate the size and height of InN QDs with analysis of 2-D image of AFM through IMAQ software; and from the analysis of EDS, we find the composition of sample are Al, N and In. In XRD experiment, we find the signal of InN(002), and it’s peak position would shift with size and height of QDs. When the average height of QDs is lower than 60nm, the tensile strain will occur by 0.11~0.22% along c-axis. We guess it is because InN and AlN mismatch. Finally, from optical analysis, the photon energy of QDs which average height is about 60nm is 0.82eV, which is different from that of thin film 0.75eV by 70meV. Whether the blue shift is resulted from quantum efficiency, more testimonies are necessary. |
參考文獻 |
[1] R. Juza and H. Hahn, Z. Anorg. Allg. Chem. 239, 282 (1938).
[2] C. L. Wu, C. H. Shen, H. Y. Chen, S. J. Tsai, H. W. Lin, H. M. Lee, S. Gwo, T. F. Chuang, H. S. Chang, T. M Hsu, J. Crystal Growth 288,274-253 (2006).
[3] T. L. Tansley, C. P. Foley, J. Appl. Phys. 59,3241 (1986).
[4] O. Briot, B. Maleyre, and S. Ruffenach, Appl. Phys. Lett. 83,14 (2003). [5] J. G. Lozano, A. M. Sanchez, R. Garcia, D. Gonzalez, D. Araujo, S. Ruffenach and O. Briot, Appl. Phys. Lett. 87,263104 (2005).
[6] J. G. Lozano, A. M. Sanchez, R. Garcia, D. Gonzalez, O. Briot and S. Ruffenach, Appl. Phys. Lett. 88,151913 (2006).
[7] S. Ruffenach, B. Maleyre, O. Briot, and B. Gil, Phy. Stat. sol. (c), No.2, 826-832 (2005).
[8] Jeng-Han Wang and M. C. Lin, ChemPhysChem, 5, 1615-1618 (2004).
[9] B. Maleyre, O. Briot, S. Ruffenach, J. Crystal Growth 269,15-21 (2004). [10]Jasprit Singh, Electronic and optoelectronic properties of semiconductor structures, New York : Cambridge University Press (2003).
[11] D. Bimberg, M.Grundmann, N. N. Ledentsov, Quantum Dot Heterostructures, Weily, Chichester (1999).
[12] Albert-Laszlo Barabasi, Materials Science and Engineering, B67 23–30 (1999).
[13] F. Hatami, V. Lordi, J. S. Harris, H. Kostial and W. T. Masselink, J. Appl. Phys. 97, 096106 (2005).
[14] G. Ortner, C. Ni. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, Appl. Phys. Lett. 88, 121119 (2006).
[15] H. C. Liu, M. Gao, J. McCaffrey, Z. R. Wasilewski, and S. Fafard, Appl. Phys. Lett. 78, 1 (2001).
[16]呂淑芳,以有機金屬氣相磊晶法成長銦砷化鎵量子點之研究,中華民國八十九年八月,國立交通大學電子物理學研究所碩士論文
[17]林弘偉,氮化銦磊晶薄膜及量子點材料之研究,中華民國九十三年八月,國立清華大學物理學研究所碩士論文
[18]陳香妤,應力緩衝層對砷化銦量子點侷限能階之影響,中華民國九十三年六月,國立中央大學物理學研究所碩士論文
[19]Yeh. C et al., Phys. Rev. B: Condens. Matter. 46, 10086 (1992).
[20]黃信雄,以電漿輔助分子束磊晶成長自聚性氮化銦量子點,中華民國九十三年六月,國立中山大學物理學研究所碩士論文
[21]陳孟炬,三、五族半導體光偵測器與太陽能電池材料之研究,中華民國九十五年六月,國立中央大學光電科學學研究所博士論文
[22] M. Gr?tzel, Nature, 414, p. 338-344 (2001).
[23]許樹恩、吳泰伯,X光繞射原理與材料結構分析,行政院國家科學委員會精密儀器發展中心 |