博碩士論文 101282603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.221.165.246
姓名 泰士仁(Tessera Alemneh Wubieneh)  查詢紙本館藏   畢業系所 物理學系
論文名稱 以工程技術調控SnSe和CaZn2Sb2熱電材料於廢回收之應用
(Engineering Tin Chalcogenide and Zintl Phase Thermoelectric Materials for Waste Heat Recovery)
相關論文
★ GW準粒子於Mn3O4和GaN的激發態性質計算★ 混合物種與低溫冷凍原子團簇噴流的發展
★ 以雷射脈衝對磁性薄膜進行超快磁轉化及其動態時間解析★ 以脈衝雷射沈積製造FeBO3薄膜
★ 硒化鐵奈米微粒之超導及碲化鉍奈米線之熱電物性研究★ 共焦拉曼與螢光顯微鏡之發展及其在材料診斷上之應用
★ 以光激發黑色素來清除細胞環境中之活性氧之探討★ Bi-Sb-Te熱電與Au-X-Al2O3熱傳導性質研究
★ Bi-Sb-Te奈米薄片之磁性傳導性質與西貝克係數★ 發展在電漿波導式雷射電漿波電子加速器中誘發電子注入與X 光產生之技術
★ 莫斯堡光譜儀的建造以及其應用到FeCO3薄膜的診斷★ 發展利用另一道脈衝雷射在脈衝雷射沉 積技術中成長碳薄膜的雷射同步過程進 行碳薄膜晶向之控制
★ 研究以雷射進行基板之前置處理來達到控制脈衝雷射沉積的矽鍺量子點的尺寸分布的可行性★ 以超短脈衝雷射沉積技術製作鍺/矽薄膜之研究
★ 一百兆瓦雷射系統之建造與在結構化電漿波導之應用★ 以基質輔助脈衝雷射蒸鍍法製備聚3-己基噻酚/(6,6)-苯基-C61-丁酸甲酯有機太陽能電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著對環境保護和對使用潔淨能源的日益需求與關注,促成了開發替代性和永續性能源的相關研究。熱電效應是一種能將熱能與電能做直接及可逆的轉換,並為廢熱發電提供可行的途徑。熱電材料在發電領域變得越來越重要,在沒有排放有毒物質的情況下實現製冷,為解決當今的能源和環境問題提供了很大的契機。在所有先進的高溫熱電材料中,由於硒化錫和鈣鋅銻礦化合物表現出低熱導率和高熱電優質係數,現已經被確認為極具潛力的熱電材料。 硒化錫在室溫下被廣泛認為是一種簡單的層狀正交晶體結構,與氯化鈉結構的三維變形相似。據報導,單晶硒化錫最佳的熱電優質係數值在923 K時約為2.6。然而,單晶製造方法與較差的機械性能,阻礙了該材料在熱電器件的實際應用。因此,找到其多晶對應物並適合工業規模生產出高密度熱電材料是非常迫切需要的。摻雜的方式除了可降低其熱傳導性也能調控材料的載流子濃度,是能最有效優化p型硒化錫和鈣鋅銻礦化合物的熱電性能。

在本論文中,我們提出並且成功地藉由熔融、淬火和火花電漿燒結術製備高密度多晶鍺摻雜硒化錫和銪摻雜鈣鋅銻礦化合物塊材,以達到改質樣品的熱電與機械性能。在這項研究中,p型多晶鍺摻雜硒化錫系統中的錫可被鍺所取代,近而調控材料的傳輸性質。我們發現鍺摻雜雖可產生晶格缺陷,但卻能增加材料的西貝克係數,同時也可藉由增強聲子散射,以達到降低晶格熱導率。所有鍺取代的樣品都顯示出低導熱性,這主要歸因於來自無序摻雜原子的聲子散射和硒化錫結構中原子鍵結的產生的顯著非諧調性質。因此,在800 K時,1% 的鍺摻雜硒化錫便可達到最高的熱電優質係
數0.77。該數值比未摻雜的多晶硒化錫(zT = 0.56)增強了約40 %。同樣地,Zintl相這類的材料也是可以用於熱電器件的另一種材料。因為這類材料具備理想熱電材料(西貝克係數、電阻率、導熱性)該有的複雜晶體結構。在Zintl相中,p型多晶銪摻雜鈣鋅銻礦化合物中利用銪取代鈣原子位置,以達到優化傳輸性能。當銪原子取代鈣原子後,由於載流子濃度提高和熱傳導降低,導致材料的電阻率降低了約50 %以上。這是由於藉由在晶格中陽離子位置引入多個離子所導致的結構無序,進而使得聲子的散射提高。因此,稀土元素銪在鈣陽離子位置的取代顯著地增加了熱電優質係數。研究結果證實,利用鍺和銪摻雜都能是可有效提高硒化錫和鈣鋅銻礦等化合物的熱電性能。
摘要(英) With increasing concerns regarding environmental protection and the growing demand to use clean energy have stimulated research to develop an alternative and sustainable energy sources. Thermoelectric effect enables direct and reversible conversion of thermal energy into electrical energy, and provides a viable route for power generation from waste heat. Thermoelectric (TE) materials are becoming increasingly important in the field of electricity generation and realize refrigeration without the emission of toxic matters, offer a great opportunity for solving today’s energy and environmental issues. Among all state-of-the-art high temperature thermoelectric materials, SnSe and CaZn2Sb2 have been firmly established as a potential TE material, which exhibit low thermal conductivity and high figure of merit values. SnSe widely identified as a simple layered orthorhombic crystal structure at room temperature, which is similar with a three dimensional distortion of NaCl structure. It has been reported that a single crystal SnSe shows excellent thermoelectric performance, with zT value around 2.6 at 923 K. The single crystal fabrication method and the poor mechanical property, which prevent the practical applications of thermoelectric devices. Therefore, it is quit essential to find its polycrystalline counterparts to fabricate highly dense thermoelectric materials and suitable for an industrial scale up. Doping is an effective way to optimize the thermoelectric properties of p-type SnSe and CaZn2Sb2 by reducing its thermal conductivity and adjusting its carrier concentration.
In this dissertation, it is proposed that highly dense polycrystalline (Sn1-xGex)Se and (Ca1-xEux)Zn2Sb2 bulks could be prepared by melt-quench and spark plasma sintering method to engineer the thermoelectric performance and mechanical properties of specimens. We
successfully fabricated highly dense pure polycrystalline (Sn1-xGex)Se and (Ca1-xEux)Zn2Sb2 bulk samples using the proposed melt-quench and spark plasma sintering approach.
In this study, Sn was substituted with Ge in the p-type polycrystalline (Sn1-xGex)Se system to engineer the transport property. We found that Ge doping increases Seebeck coefficient and simultaneously reduces lattice thermal conductivity by enhancing phonon scattering via lattice defect. All germanium substituted samples show low thermal conductivity, which is mainly attributed to phonon scattering from disordered dopant atoms and the high anharmonic boding nature of SnSe. As a result the highest TE dimensionless figure of merit zT = 0.77 was obtained for (Sn0.99Ge0.01)Se at 800 K, which shows 40% enhancement over the pristine polycrystalline SnSe (zT=0.56). Similarly, Zintl phases are a class of materials that can be used in TE devices because they often possess complex crystal structures necessary for the desired thermoelectric properties (Seebeck, electrical resistivity, thermal conductivity). Ca was substituted with Eu in the Zintl phase p-type polycrystalline (Ca1-xEux)Zn2Sb2 compound to optimize the transport property. After europium substitution it shows that more than 50% decrement in electrical resistivity because of high charge carrier concentration and low thermal conductivity due to high phonon scattering through structural disorder yielded by the incorporation of multiple ions in the cation. Consequently, the cationic substitution of rare earth element Eu in the Ca site significantly increased thermoelectric dimensionless figure of merit. These results indicate that doping with Ge and Eu are an effective approach to enhance thermoelectric performance of SnSe and CaZn2Sb2 compounds respectively.
關鍵字(中) ★ 替代性和永續性能源
★ 熱電效應
關鍵字(英) ★ alternative and sustainable energy sources
★ Thermoelectric effect
論文目次 Abstract …………………………………………………………………………………..…....i
Acknowledgements………………………………………………………………………....…v
Table of contents……………………………………………………………………...............vii
List of figures………………………………………………………………………................ix
List of tables …………………………………………………………………………….. .....xii
List of abbreviations and symbols………………………………………………….. …...….xiii
Chapter
1 Introduction……………………………………....……………..…………….………1
1.1. Background………………………………………………….…………………….1
1.2.Fundamentals of thermoelectricity……………………………………...… ………2
1.2.1. Seebeck effect……………………….………………………..……………3
1.2.2. Peltier effect…….……………………………………………….…………6
1.2.3. Thomson Effect……………………………………………….. ….……….7
1.2.4. Kelvin Relationships…………………………………………..……….…..9
1.3.Applications of thermoelectric Modules …………………………….…………….9
1.4.Thermoelectric efficiency ………………………………………………………..14
1.4.1. Compatibility factor ……………………………………………………...18
1.4.2. Seebeck coefficient …………………………………………………....…20
1.4.3. Thermal conductivity…………………………………………….….……21
1.4.4. Electrical conductivity ……………………………………….………..…25
1.5.Thermoelectric materials …………………………………………………………28
1.6.Tin Chalcogenide……………………………………………………..…………..30
1.6.1. SnSe…………………….……………………………………….………..30
1.7. Zintl Phase ……………………………………………………………………….34
1.8. References ……………………………………………………………...………..37
2 Experimental Methods ……………...………………………………………...……49
2.1.Synthesis …………………………………………………………………...…….49
2.1.1. Solid state reaction…………………………………………..……………49
2.1.2. Melt quench Technique ……………………………….………………….50
2.1.3. Spark Plasma Sintering …………………………………….…...………..53
2.1.4. Experimental Synthesis…………………………………….……..………56
2.1.5. Analysis Technique ………………………………………….……..……57
2.2.Material Characterization ………………………………………………………...58
2.2.1. X-ray diffraction (XRD) …………………….…...………………………58
2.2.2. Powder diffraction (PXRD)……………………………………….…...…62
2.2.3. Wave length dispersive X-ray Florescence Spectroscopy (XRF)………..65
2.2.4. Scanning Electron Microscope (SEM) ……………………………..……67
2.3.Electrical transport property measurements………………………………. ……..69
2.3.1. High Temperature Resistivity and Seebeck Coefficient …….…………...69
2.3.2. Hall effect ………………….……………………………………………..70
2.4.Thermal analysis……………………………………………………………….....71
2.5.Thermal conductivity measurement ……………………………………………...72
2.6.References………………………………………………………………………...74
3 The effects of Ge doping on thermoelectric performance of p-type polycrystalline SnSe…………………...……………………………………………………………...76
3.1.Introduction ……………………………………………………………………....77
3.2. Experimental Methods ……………………………………………………….….78
3.3. Results and Discussion …...……………………………………………..……….80
3.3.1. Phase and structure analysis ………………………………………..…….80
3.3.2. Thermoelectric properties …………………………………….……..…...82
3.4.Conclusions………….……………………………………………………….….. 88
3.5.Supplementary Information………………………………………………………88
3.6.References…………………………………………………………………......….91
4 Thermoelectric properties of Zintl phase compounds of Ca1-xEuxZn2Sb2 (0.x.1)……………………………………………………………………………….94
4.1.Introduction…………………………………………………………. …..……….95
4.2.Experimental methods…………………………….. ……………………………..96
4.3.Results and discussion …….………………………………………………..……98
4.3.1. Structure and phase analysis……….………………………………….….98
4.3.2. Thermoelectric properties ………….………………………………...…..99
4.4.Conclusions…………. ……………………………………………………….…103
4.5.References ………………………………………..…………….……………….104
5 Conclusions …………………...………………………….……….…………….….106
5.1 (Sn1-xGex)Se……………...…………………………….….…………………….106
5.2 (Ca1-xEux)Zn2Sb2………………………………………....………….………..…108
6 Future work and outlook……………………………………………………..……110
List of publications…………………………………………………………............112
參考文獻 1. D. M. Rowe, CRC Handbook of thermoelectrics; CRC Press: Boca Raton, FL, 1995.

2. D. Rowe, ed., Thermoelectrics Handbook: Macro to Nano, CRC Press, Boca Raton, 2006.


3. G. Chen, M. S. Dresselhaus, G. Dresselhaus, J. P. Fleurial and T. Caillat, Int. Mater. Rev., 2003, 48, 45.

4. T. M. Tritt and M. A. Subramanian, MRS Bull., 2006, 31, 188.

5. G. S. Nolas, J. Sharp, and H. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer, New York, 2001.

6. T. M. Tritt, ed., Recent Trends in Thermoelectric Materials Research, in Semiconductors and Semimetals, Academic Press, San Diego, 2001, vol. 69-71.

7. M. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial and P. Gogna, Adv. Mater., 2007, 19, 1043.

8. H. J. Goldsmid, Thermoelectric Refrigeration, Plenum Press, New York 1964.

9. D. D. Pollock, Thermocouples: Theory and Properties, CRC Press, Boca Raton, FL 1991.

10. R. Venkatasubramanian et al., Nature, 2001, 413, 597.

11. Recent Trends in Thermoelectric Materials Research III, Vol. 71 (Ed.:T. M. Tritt), Academic Press, San Diego, CA 2001.

12. Matsubara, K. in International Conference on Thermoelectrics 2002, 418–423.

13. C. Wood, Rep. Prog. Phys., 1988, 51, 459.

14. F. J. DiSalvo, Thermoelectric cooling and power generation. Science, 1999, 285, 703-706.

15. B. C. Sales, Science, 2002, 295, 1248.

16. S. B. Riffat, X. Ma, Appl. Therm. Eng., 2003, 23, 913.

17. L. E. Bell, Science, 2008, 321, 1457.

18. G. Jeffrey Snyder, Eric S. Toberer, Complex thermoelectric materials, Nature Material, 7, 2008.



19. Boydston, R. W. Thermo-Electric Effect in Single-Crystal Bismuth. Phys. Rev. 1927, 30, 911-921.


20. Henkels, H. W. Thermoelectric Power and Mobility of Carriers in Selenium. Phys. Rev. 1950, 77, 734-736.

21. Soroos, A. Thermoelectric Power of Single Crystal Bismuth near the Melting Point. Phys. Rev. 1932, 41, 516-522.

22. Bidwell, C. C. Electrical Resistance and Thermo-Electric Power of the Alkali Metals. Phys. Rev. 1924, 23, 357-376.

23. Greenwood, N.; Anderson, J. Conductivity and Thermoelectric Effect in Cuprous Oxide. Nature 1949, 164, 346-347.

24. Andrews, J. Thermoelectric Power of Cadmium Oxide. Proc. Phys. Soc. 1947, 59, 990-998.

25. Bidwell, C. C. Electrical and Thermal Properties of Iron Oxide. Phys. Rev. 1917, 10, 756-766.

26. Goldsmid, H.; Douglas, R. The Use of Semiconductors in Thermoelectric Refrigeration. Br. J. Appl. Phys. 1954, 5, 386-390.

27. Herring, C. Theory of the Thermoelectric Power of Semiconductors. Phys. Rev. 1954, 96, 1163-1187.

28. Price, P. Theory of Transport Effects in Semiconductors: Thermoelectricity. Phys. Rev. 1956, 104, 1223-1239.

29. Goldsmid, H. Thermoelectric Applications of Semiconductors. J. Electron. Control 1955, 1, 218-222.

30. H. J. Goldsmid, A. R. Sheard, D. A. Wright, The performance of bismuth telluride thermojunctions, British Journal of Applied Physics., 1958, 9, 365-370.


31. H. .J. Goldsmid, R.W. Douglas, The use of semiconductors in thermoelectric refrigeration, British Journal of Applied Physics., 1954, 5, 386-390.

32. R. R. Heikes, & R. W. Ure, Thermoelectricity: Science and Engineering Interscience, New York, 1961.

33. F. D. Rosi, Thermoelectricity and thermoelectric power generation. Solid-State Electron, 1968, 11, 833-848.

34. F. D Rosi, E. F. Hockings, & N. E. Lindenblad, Semiconducting materials for thermoelectric power generation. RCA Rev., 1961, 22, 82–121.

35. A. F. Loffe, Semiconductor Thermoelements and Thermoelectric Cooling. Info search, UK, 1957.

36. Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E.; Kanatzidis, M. G. Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit. Science 2004, 303, 818-821.

37. Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; et al. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science 2008, 320, 634-638.

38. Biswas, K.; He, J.; Zhang, Q.; Wang, G.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G. Strained Endotaxial Nanostructures with High Thermoelectric Figure of Merit. Nat. Chem. 2011, 3, 160-166.

39. Biswas, K.; He, J.; Blum, I. D.; Wu, C.-I.; Hogan, T. P.; Seidman, D. N.; Dravid, V. P.; Kanatzidis, M. G. High-Performance Bulk Thermoelectrics with All-Scale Hierarchical Architectures. Nature 2012, 489, 414-418.


40. Vineis, C. J.; Shakouri, A.; Majumdar, A.; Kanatzidis, M. G. Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features. Adv. Mater. 2010, 22, 3970-3980.

41. Hicks, L.; Dresselhaus, M. Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit. Phys. Rev. B: Condens. Matter Mater. Phys. 1993, 47, 12727-12731.

42. Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R.; Lee, H.; Wang, D.; Ren, Z.; Fleurial, J. P.; Gogna, P. New Directions for Low Dimensional Thermoelectric Materials. Adv. Mater. 2007, 19, 1043-1053.

43. Hicks, L.; Dresselhaus, M. Thermoelectric Figure of Merit of a One Dimensional Conductor. Phys. Rev. B: Condens. Matter Mater. Phys. 1993, 47, 16631-16634.

44. Kim, S. I.; Lee, K. H.; Mun, H. A.; Kim, H. S.; Hwang, S. W.; Roh, J. W.; Yang, D. J.; Shin, W. H.; Li, X. S.; Lee, Y. H.; et al. Dense Dislocation Arrays Embedded in Grain Boundaries for High Performance Bulk Thermoelectrics. Science 2015, 348, 109.114.

45. Heremans, J. P.; Jovovic, V.; Toberer, E. S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G. J. Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States. Science 2008, 321, 554-557.

46. Liu, W.; Tan, X.; Yin, K.; Liu, H.; Tang, X.; Shi, J.; Zhang, Q.; Uher, C. Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance of N-Type Mg2Si1.xSnx Solid Solutions. Phys. Rev. Lett. 2012, 108, 166601.

47. Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G. J. Convergence of Electronic Bands for High Performance Bulk Thermoelectrics. Nature 2011, 473, 66-69.

48. Pei, Y.; Wang, H.; Snyder, G. Band Engineering of Thermoelectric Materials. Adv. Mater. 2012, 24, 6125-6135.


49. Zhao, L.-D.; He, J.; Hao, S.; Wu, C.-I.; Hogan, T. P.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Raising the Thermoelectric Performance of P-Type PbS with Endotaxial Nanostructuring and Valence-Band Offset Engineering Using CdS and ZnS. J. Am. Chem. Soc. 2012, 134, 16327-16336.

50. Zhao L. D., Hao S., Lo S. H., Wu C. I., Zhou, X.; Lee, Y.; Li, H.; Biswas, K.; Hogan, T. P.; Uher, C.; et al. High Thermoelectric Performance Via Hierarchical Compositionally Alloyed Nanostructures. J. Am. Chem. Soc. 2013, 135, 7364-7370.

51. C. Uher, Thermoelectric Materials Research I (ed. Tritt, T.) 139-253 (Semiconductors and Semimetals Series 69, Elsevier, 2001).

52. G. S Nolas, J. Poon, & M. Kanatzidis, Recent developments in bulk thermoelectric materials. Mater. Res. Soc. Bull., 2006, 31, 199-205.

53. S. M. Kauzlarich, S. R. Brown, & G. J. Snyder, Zintl phases for thermoelectric devices. Dalton Trans., 2007, 2099-2107.

54. B. C. Sales, D. Mandrus, R. K. Williams, Science, 1996, 272, 1325.

55. G. S. Nolas, D. T. Morelli, T. M. Tritt, Annu. Rev. Mater. Sci., 1999, 29, 89.

56. G. S. Nolas, J. L. Cohn, G. A. Slack, S. B. Schujman, Appl. Phys. Lett., 1998, 73, 178.

57. P. Vaqueiro, A.V. Powell, Recent developments in nanostructured materials for high performance thermoelectrics, Journal of Materials Chemistry., 2010, 20, 9577-9584.

58. S. K. Bux, J. P. Fleurial, R. B. Kaner, Nanostructured materials for thermoelectric applications. Chemical Communications, 2010, 46, 8311-8324.

59. T. J Seebeck, Magnetische polarisation der metalle und erze durck temperatur-differenz, Abh. K. Akad. Wiss, 1823, 265.

60. Seebeck T. J. Ann. Phys., (Leipzig) 1826, 2(6):1.


61. Henri Le Chatelier, 1885.

62. The international practical temperature scale of 1968, Amended edition of 1975(1976), Metrologia, 12: 7-17.

63. J. C. Peltier, Nouvelles experiences sur la caloriecete des courans electriques. Ann. Chem. LVI, 1834, 371-387.

64. A. F. Ioffe, Semiconductor thermoelements and thermoelectric cooling, 1957, Infosearch, London.

65. W. Thomson, 1851, on a mechanical theory of thermoelectric currents, Proc. Roy. Soc., Edinburgh, 91-98.

66. T. M. Tritt, Thermoelectric materials 2000 the next generation materials for small-scale refrigeration and power generation applications: symposium held April 24-27, 2000, San Francisco, California, U.S.A (Materials Research Society, Warrendale, Pa., 2001), p. 1 v. (various pagings).

67. D. K. C. MacDonald, Thermoelectricity: An Introduction to the Principles (Wiley, New York, 1962).

68. N. W. Ashcroft, & N. D. Mermin, Solid State Physics (Saunders College, FortWorth, TX 1976).

69. G. Mahan, B. Sales, & J. Sharp, Thermoelectric materials: New approaches to an old problem. Phys. Today., 1997, 50, 42-47.

70. "Thermoelectric Coolers Basics". TEC Microsystems. Retrieved 16 March 2013.

71. R. A. Taylor, G. Solbrekken, Comprehensive system level optimization of thermoelectric devices for electronic cooling applications, Components and Packaging Technologies, IEEE Transactions on (Volume:31 , Issue: 1, 2008).


72. G. Bale et al., Cooled CdZnTe detectors for x-ray astronomy, Nuclear Instrument and Methods in Physics Research Section A: Accelerator, Spectrometers, Detectors and Associated Equipment 436 (1999) 150-154.

73. M. K. Scruggs et al., Thermal electrically cooled photodetector, United States Patent Application, 20010032922, kind code, Al, October 25, 2001.

74. http://www2.jpl.nasa.gov/basics/rtg.gif.

75. http://www.themotorreport.com.au/23040/bmw-and-nasa-teaming-up-to-devise-regenerativeexhaust-system/.

76. E. Altenkirch, Physikalische Zeitschrift 10, 560-580 (1909); Physikalische Zeitschrift 12, 920 (1911).

77. J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, New and old concepts in thermoelectric materials. Angew. Chem. International Edition 48 (2009).

78. G. J. Snyder, Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators, Appl. Phys. Lett. 2004, 84, 2436.

79. G. A. Slack and V. G. Tsoukala, J. Appl. Phys., 1994, 76, 1665-1672.

80. G. A. Slack, Solid State Physics, Academic Press, New York, 1979.

81. Y. C. Lan, A. J. Minnich, G. Chen, Z. F. Ren, Enhancement of thermoelectric figure of merit by a bulk nanostructuring approach, Advanced Functional Materials., 2010, 20, 357-376.

82. A. Shakouri, Annu. Rev. Mater. Res., 2011, 41, 399-431.

83. D. Greig, Electrons in metals and semiconductors, McGraw-Hill, London, UK, 1969.

84. D. Parker, X. Chen, D. J. Singh, High three dimensional thermoelectric performance from low dimensional bands, Phys. Rev. Lett. 2013, 110, 146601.


85. J. R. Sootsman, D. Y. Chung and M. G. Kanatzidis, Angew. Chem., Int. Ed., 2009, 48, 8616-8639.

86. J. F. Li, W. S. Liu, L. D. Zhao and M. Zhou, NPG Asia Mater. 2010, 2, 152-158.

87. P. Pichanusakorn and P. Bandaru, Mater. Sci. Eng., R, 2010, 67, 19-63.

88. H. Heinrich, K. Lischka, H. Sitter and M. Kriechbaum, Phys. Rev. Lett., 1975, 35, 1107-1110.

89. H. Sitter, K. Lischka and H. Heinrich, Phys. Rev. B. 1977, 16, 680–687.

90. N. V. Kolomotes, M. N. Vinogradova and L. M. Sysoeva, Semiconductors, 1968, 1, 1020-1023.

91. J. P. Hermans, C. M. Thrus and D. T. Morelli, Thermopower enhancement in lead telluride nanostructures, Phy. Rev. B 70, 115334 (2004).

92. Gangjian Tan, Li-Dong Zhao, and Mercouri G. Kanatzidis, Chem. Rev.116, 12123-12149 (2016).

93. L. D. Zhao, S. H Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid & M. G. Kanatzidis, ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature, 508, 373 (2014).

94. Q. Zhang, E. K. Chere, J. Sun, F. Cao, K. Dahal, S. Chen, G. Chen and Z. Ren, Studies on thermoelectric properties of n-type polycrystalline SnSe1-xSx by Iodine doping, Adv. Energy Mat. 2015, 150060.

95. K. Peng, X. Lu, H. Zhan, S. Hui, X. Tang, G. Wang, J. Dai, C. Uher, G. Wang and X. Zhou, Broad temperature plateau for high ZT in heavily doped p-type SnSe single crystal, Energy Environ. Sci. 2016, 9, 454.


96. Z. Nabi, A. Kellou, S. Mecabih, A. Khalif and N. Benosman, Mater. Sci. Eng. B, 2003, 98, 104-115.

97. D. Chun, R.M.Walser, R.W. Bene, T.H. Courtney, Appl. Phys. Lett. 24 (1974) 479.

98. A. Agarwal, M.N. Vashi, D. Lakshminarayana, N.M. Batra, J. Mater. Sci. Mater. Electron. 11 (2000) 67.

99. Z. Zainal, S. Nagalingam, A. Kassim, M.Z. Hussein, W.M.M. Yunus, Sol. Energy Mater. Sol. Cells 81 (2004) 261.

100. D. Martinez-Escobar, M. Ramachandran, A. Sanchez-Juarez, J.S. Narro Rios, Thin Solid Films 535 (2013) 390.

101. B. Pejova, A. Tanusevski, J. Phys. Chem. C 112 (2008) 3525.

102. W.J. Baumgardner, J.J. Choi, Y.F. Lim, T. Hanrath, J. Am. Chem. Soc. 132 (2010) 9519.

103. M.Z. Xue, J. Yao, S.C. Cheng, Z.W. Fu, J. Electrochem. Soc. 153 (2006) A270.

104. J. X. Ding, B. Xu, Y. H. Lin, C. W. Nan and W. Liu, New J. Phys. 2015, 17, 083012.

105. T. R. Wei, C. F. Wu, X. Z. Zhang, Q. Tan, L. Sun, Y. Pan and J. F. Li, Phys. Chem. Chem. Phys. 2015, 17, 30102-30109.

106. D. D. Cuong, S. H. Rhim, J. H. Lee and S. C. Hong, AIP Adv., 2015, 5, 117147.

107. J. Carrete, N. Mingo and S. Curtarolo, Appl. Phys. Lett. 2014, 105, 101907.

108. S. Sassi, C. Candolfi, J. B. Vaney, V. Ohorodniichuk, P. Masschelein, A. Dauscher and B. Lenoir, Appl. Phys. Lett. 2014, 104, 212105.

109. F. Serrano-Sanchez, M. Gharsallah, N. M. Nemes, F. J. Mompean, J. L. Martinez and J. A. Alonso, Appl. Phys. Lett. 2015, 106, 083902.

110. X. H. Guan, P. F. Lu, L. Y. Wu, L. H. Han, G. Liu, Y. X. Song and S. M. Wang, J. Alloys Compd. 2015, 643, 116-120.


111. G. S. Shi and E. Kioupakis, J. Appl. Phys. 2015, 117, 065103.

112. H. Q. Leng, M. Zhou, J. Zhao, Y. M. Han and L. F. Li, J. Electron. Mater. 2016, 45, 527-534.

113. A. Banik and K. Biswas, J. Mater. Chem. A, 2014, 2, 9620-9625.

114. C. L. Chen, H. Wang, Y. Y. Chen, T. Day and G. J. Snyder, J. Mater. Chem. A, 2014, 2, 11171-11176.

115. E. K. Chere, Q. Zhang, K. Dahal, F. Cao, J. Mao and Z. F. Ren, J. Mater. Chem. A, 2016, 4, 1848-1854.

116. Y. M. Han, J. Zhao, M. Zhou, X. X. Jiang, H. Q. Leng and L. F. Li, J. Mater. Chem. A, 2015, 3, 4555-4559.

117. Z. H. Ge, K. Y. Wei, H. Lewis, J. Martin and G. S. Nolas, J. Solid State Chem. 2015, 225, 354-358.

118. S. Sassi, C. Candolfi, J. B. Vaney, V. Ohorodniichuk, P. Masschelein, A. Dauscher and B. Lenoir, Mater. Today, 2015, 2, 690-698.

119. F. Q. Wang, S. H. Zhang, J. B. Yu and Q. Wang, Nanoscale, 2015, 7, 15962-15970.

120. K. Kutorasinski, B. Wiendlocha, S. Kaprzyk and J. Tobola, Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91, 205201.

121. G. Q. Ding, G. Y. Gao and K. L. Yao, Sci. Rep. 2015, 5, 9567.

122. M. Gharsallah, F. Serrano-Sa’nchez, N. M. Nemes, F. J.Mompea’n, J. L. Mart.’nez, M. T. Ferna’ndez-D.’az, F. Elhalouani and J. A. Alonso, Sci. Rep. 2016, 6, 26774.

123. H. Ju and J. Kim, Ceram. Int., 2016, 42, 9550-9556.

124. J.H. Kim, S.Oh, Y.M. Kim, H. S. So,H. Lee, J.-S. Rhyee, S.-D. Park and S.-J. Kim, J. Alloys Compd., 2016, 682, 785-790.


125. T. J. Zhu, K. Xiao, C. Yu, J. J. Shen, S. H. Yang, A. J. Zhou, X. B. Zhao and J. He, J. Appl. Phys. 2010, 108, 044903.

126. B. Qiu, H. Bao, G. Q. Zhang, Y. Wu and X. L. Ruan, Comput. Mater. Sci. 2012, 53, 278–285.

127. L. D. Zhao, C. Chang, G. Tan and M. G. Kanatzidis, SnSe: remarkable new thermoelectric materials, Enery Environ. Sci. 2016, 9, 3044.

128. Kauzlarich, S. M., Chemistry, Structure, and Bonding of Zintl Phases and Ions. VCH Publishers, Inc: New York, 1996.

129. Susan M. Kauzlarich, Shawna R. Brown, G. Jeffrey Snyder, Dalton Trans. 2007, 2099-2107.

130. J. K. Brudett, G. J. Miller, Chem. Mater. 1990, 2, 12-26.
指導教授 陳賜原、陳洋元(Szu-Yuan Chen Yang-Yuan Chen) 審核日期 2017-5-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明