博碩士論文 105222032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:104 、訪客IP:18.118.126.123
姓名 林柏丞(Po-Cheng Lin)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Dynamics of unstable drops levitated in an acoustic field)
相關論文
★ 二加一維鏈狀微粒電漿液體微觀運動與結構之實驗研究★ 剪力下的庫倫流體微觀黏彈性反應
★ 強耦合微粒電漿中的結構與動力行為研究★ 脈衝雷射誘發之雷漿塵爆
★ 強耦合微粒電漿中脈衝雷射引發電漿微泡★ 二維強耦合微粒電漿方向序的時空尺度律
★ 二維微粒庫倫液體中集體激發微觀動力研究★ 超薄二維庫侖液體的整齊行為
★ 超薄二維微粒電漿庫侖流的微觀運動行為★ 微米狹縫中之脈衝雷射誘發二維氣泡相互作用
★ 介觀微粒庫倫液體之流變學★ 二維神經網路系統之集體發火動力學行為
★ 大白鼠腦皮質層神經元網路之同步發放行為研究★ 二維團簇腦神經網路之同步發火
★ 二維微粒電漿液體微觀結構之記憶行為★ 微粒電漿中電漿微泡的生成與交互作用之動力行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 超聲波懸浮是一種透過聲音輻射壓用來移動或固定需要高純度的樣品在半空中的非接觸式懸浮方法,藉由產生高強度聲音駐波,物體可以被懸浮在壓力節點上。和磁懸浮或電懸浮相比,因為他對於材料的限制較少,近年來有許多研究在探討其應用,包括懸浮極端環境的過冷水滴或融化的金屬液滴,或是利用時空上調制超聲波陣列的輸出強度來移動物體,但懸浮的穩定性一直是超聲波懸浮待解決的問題。
在這篇論文裡主要是探討水滴在不穩定的單節點聲音懸浮場中如何運動和其基本運動模態。透過降低聲場強度,實驗上觀察到水滴從穩定懸浮到不穩定的自發增長震盪包括準週期震盪、渾沌或是更加混亂的水滴破碎,而震盪增長和失穩是起源於小腔體裡區域聲場被水滴散射而導致的等效負阻尼力,當等效負阻尼力大於空氣阻力和水滴內部的黏滯力,水滴震盪的振幅將會增長進而導致非線性自發震盪的產生。
水滴自發的模態主要是由表面張力、重力、聲場強度和模態數所決定的。大顆的水滴的自發震盪是由振幅逐漸增長的垂直振盪模態跟緯向(zonal)模態所構成,當振幅過大時,大顆水滴將會掉落至底板。小顆的水滴則是由不同的扇形(sectorial)模態跟被誘發出來的緯向模態所組成,這些模態隨著時間演化,頻率跟振幅均互相調制而形成混亂的震盪模式。當這些模態同時激發時,因為表面張力無法抵抗劇烈的動量變化,水滴會在扇葉形狀的尖端擠出小水滴而導致水滴破碎。
摘要(英) Contactless handing of drops in air is an important technique for various basic researches and applications requiring high purity and less contamination. In recent years, acoustic levitation has attracted a great deal of interests due to its less restriction in materials. By using the acoustic radiation force, the drop can be suspended around the pressure node of an intensive acoustic standing wave. However, the stability of acoustic levitation is still one of the problem comparing with other techniques like electrostatic or magnetic levitation.
In this work, the stability of mm sized water drops suspended in a single-node acoustic levitation system is investigated experimentally. The unstable self-excited oscillations, including quasi-periodic oscillation, chaotic oscillation, and shedding of the drop by decreasing the acoustic wave intensity below a threshold,
are observed. The perturbation of the local acoustic field made by the drop motion in a small cavity could be a possible source for generating an effective negative damping force to sustain the growing amplitude of the oscillation and leads to the unstable of the levitation.
The self-excited modes are determined by the interaction between surface tension, gravity, drop inertia, acoustic intensities, and mode numbers. The large drop shows self-excited quasiperiodic motion formed by a vertical oscillation mode and a zonal-like shape oscillation mode with growing coupling and amplitude, until falling to the ground. For small drops, chaotic shape oscillations are composed of several interacting spectrum-broadened sectorial modes and parametrically induced zonal modes. The high amplitude shape oscillation leads to droplet shedding at highly stretched lobes.
關鍵字(中) ★ 聲音懸浮
★ 自發震盪
★ 水滴破碎
★ 非線性動力學
關鍵字(英) ★ Acoustic levitation
★ Self-excited oscillation
★ Dorplet shedding
★ Nonlinear dynamics
論文目次 Contents

1. Introduction 1

2. Background and theory 4
2.1 Acoustic levitation······················································ 4
2.2 Oscillation modes of a levitated drop by external driving················ 6
2.3 Self-excited oscillations of acoustically levitated hard spheres········ 9

3. Experiment and data analysis 11
3.1 Experimental setup······················································· 11
3.2 Data analysis··························································· 13

4. Result and discussion 15
4.1 Overview································································ 15
4.2 Large drop······························································ 16
4.3 Small drop······························································ 19
4.4 Mode-mode coupling······················································ 23
4.5 Wave-drop interaction··················································· 25

Conclusion 28
Bibliography 30
參考文獻 Bibliography
[1] L. Rayleigh, Proc. R. Soc. Lond 29, 71 (1879).
[2] E. Trinh, T. G. Wang, J. Fluid. Mech. 122, 315-338 (1982).
[3] E. H. Trinh, C. J Hsu, J. Acoust. Soc. Am 79 (5), 1335 (1986).
[4] A. Biswas, E. W. Leung, E. H. Trinh, J. Acoust. Soc. Am. 90 (3) 1502 (1991).
[5] C. P. Lee, A. V. Anilkumar, T. G. Wang, Phys. Fluids. A 3, 2497 (1991).
[6] S.D. Danilov, M.A. Mironov , J. Acoust. Soc. Am. 92 (5), 2747 (1991).
[7] C. P. Lee, A. V. Anilkumar, T. G. Wang, Phys. Fluids. 6, 3554 (1994).
[8] Z. C. Feng, Y. H. Su, Phys. Fluids. 9, 519 (1997).
[9] E. H. Trinh, D. B. Thiessen, R. G Holt, J. Fluid. Mech. 364, 253 (1998).
[10] K. Ohsaka, E. H. Trinh, Phys. Rev. Lett. 84, 1700 (2000).
[11] A. L. Yarin, D. A. Weiss, G. Brenn, D. Rensink, Int. J. Mult. Flow. 28, 887 (2002).
[12] C. L. Shen, W. J. Xie, and B. Wei, Phys. Rev. E. 81, 046305 (2010).
[13] Y. J. Lu, W. J. Xie and B. Wei, J. Appl. Phys. 107, 014909 (2010).
[14] D. Foresti, M. Nabavi, M. Klingauf, A. Ferrari, D. Poulikakos, Proc. Natl. Acad. Sci. U.S.A.110, 12549 (2013).
[15] D. L. Geng, W. J. Xie, N. Yan, and B. Wei, Appl. Phys. Lett. 105, 104101 (2014).
[16] D. Foresti, D. Poulikakos, Phys. Rev. Lett. 112, 024301 (2014).
[17] P. C Lin, Lin I, Phys. Rev. E. 93, 021101(R) (2016).
[18] M. Papoular, C. Parayre, Phys. Rev. Lett. 78, 2120 (1997);
[19] M. Perez, L. Salvo, M. Suery, Phys. Rev. E 61, 2669 (2000).
[20] W. Bouwhuis, K. G. Winkels, I. R. Peters, P. Brunet, D. van der Meer, and J. H. Snoeijer, Phys. Rev. E 88, 023017(2013).
[21] S. Courty, G. Lagubeau and T. Tixier, Phys. Rev. E. 73, 045301(R) (2006).
[22] C.T Chang, J. B Bostwick, P. H Steen, S. Daniel, Phys. Rev. E, 88, 023015 (2013).
[23] R. J. A. Hill, L. Eaves, Phys. Rev. Lett. 101, 234501 (2008).
[24] A. Ashkin and J. M. Dziedzic, Science 187, 1073 (1975).
[25] E. H. Trinh, Rev. Sci. Instrum. 56, 2059 (1985).
[26] V. Vandaele, P. Lambert, A. Delchambre, J. Precision Eng. 29, 491 (2005).
[27] L. V. King, Proc. R. Soc. Lond, Ser. A 147, 212 (1934).
[28] F. H Busse, T. G. Wang, J. Acoust. Soc. Am. 69(6), 1634 (1981).
[29] E. Leung, C. P. Lee, N. Jacobi, and T. G. Wang, J. Acoust. Soc. Am. 72(2), 615 (1982).
[30] Rudnick and M. Barmatz, J. Acoust. Soc. Am. 87, 81 (1990).
[31] S. Baer, M. A. B. Andrade, C. Esen, J. C. Adamowski, G. Schweiger, A. Ostendorf, Rev. Sci. Instrum. 82, 105111 (2011).
[32] M. A. B. Andrade, N. Perez, J. C. Adamowski, J. Acoust. Soc. Am. 136, 1518 (2014).
[33] A. Santillan, in Proceedings of the IEEE Ultrasonics Symposium (IEEE, Piscataway, NJ, 2012), pp. 2006–2009.
[34] J. Canny, IEEE Trans. Patt. Analy. Machine Intell, 1986.
[35] L. Kaufman, P. J L. Rousseeuw, Finding Groups in Data: an Introduction to Cluster Analysis (Wiley, New York, 1990).
[36] S. Mallat, A Wavelet Tour of Signal Processing (Academic Press, New York, 1997).
[37] S. H. Strogatz, Nonlinear dynamics and chaos, (Westview Press, Boulder, 2001).
[38] D. Gabor, J. Inst. Electr. Eng.—Part III, Radio Commun. Eng., 93, 429 (1946).
[39] N. E. Huang et al., Phil. Trans. R. Soc. A 374:20150206 (2015).
[40] N. E Huang, Z. Wu, Rev. Geophys. 46, RG2006 (2008).
指導教授 伊林(Lin I) 審核日期 2017-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明