博碩士論文 104222605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.12.164.102
姓名 法瓦(wafa maftuhin)  查詢紙本館藏   畢業系所 物理學系
論文名稱 利用密度泛函緊束縛和密度泛函理論以及改良版的能量谷跳躍方法來研究金奈米叢集的最佳化構形
(Studying Au clusters by an efficient optimization algorithm that hybridizes DFTB and DFT theories with the modified basin hopping method)
相關論文
★ 金屬叢集的融化現象★ 帶電膠體系統之液態-液態/固態相變研究
★ 低濃度電解質在奈米管內異常的擴散和導電性★ 一價和多價叢集原子的熱穩定現象
★ 金屬與合金分子叢集的結構★ 物理系統之能量與焓分佈之統計力學研究
★ 膠體系統平衡相域與動態凝聚之研究★ 合金金屬叢集的溫度效應
★ 介面膠體叢聚現象的理論研究★ 帶電膠體懸浮液的相圖與液態-玻璃相變研究
★ 膠體相圖之理論計算★ 膠體、棒狀粒子混合系統之相圖的理論分析
★ 利用時間序列的統計方法研究金屬叢集的動力學★ 由分子動力學模擬探討層狀石墨烯的成長與碳化矽基板上多層石墨烯的熱穩定性
★ 金銅合金金屬叢集(N=38)的磁性性質研究★ 膠體、盤狀粒子混合系統的兩階段動態相變區域
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們將密度泛函緊束縛理論和密度泛函理論各別地和一個所謂的改良版的能量谷跳躍法做了結合,並且巧妙的將之變成了一個在計算上有強大功效的兩階段構形最佳化搜尋法並用它來搜尋了金奈米叢集( n=3-20)的最穩定結構。在第一個階段中,我們先利用了密度泛函緊束縛理論/改良版能量谷跳躍法作了一個初步概略的能量面上的搜尋,並以搜尋到的最低能量結果作為下一個階段–密度泛函理論/改良版能量谷跳躍法的候選結構的基礎。為了強化演算法的搜尋效率,我們特別針對了緊束縛理論中的排斥力能量項在一些不同的擬合參考系統中做了分析比較。這個部分之所以重要的理由在於奈米叢集的構形絕大部分都是由排斥力項所主導。我們使用了兩組不同的緊束縛擬合參數作為分析結果優劣的參考依據。這兩組參數都在上述所提的二階段構形搜尋方法中被應用。數據結果顯示,金奈米叢集的最穩定構形和第一階段方法所獲得的最低能量結構基本上是脫鉤的,只會和第二個階段方法所獲得的最穩定構形有相關。我們也和文獻上其他的理論工作以及實驗量測的結果作了交叉分析比較。我們的數值結果和他們的大致上都是符合的。
摘要(英) The density functional tight-binding (DFTB) theory and density functional theory (DFT) are separately combined with the modified basin hopping (MBH) method, and they are hybridized into an efficient two-stage algorithm for finding the lowest energy structures of gold clusters Aun with the size n spanning 3≤n≤20. In the first-stage, the DFTB/MBH is conducted mainly to provide a speedy and yet semi-quantitative searching of the lowest energy structures so as to pave the way for the second-stage DFT/MBH for a more accurate and reliable sorting of them at the DFT level. To ensure a high efficiency search of the global energy minimum, we devote more attention to the repulsive part energy in the DFTB theory and examine the quality of the DFTB parameters fitted to different set of reference structures. This study is physically relevant since the structure of a cluster is basically entropic, being by and large determined by the repulsive potential. To test the elegance of the present method, we employ two different sets of DFTB parameters for performing the first-stage DFTB/MBH but continue the second-stage optimization applying the same DFT/MBH to both. We found that the lowest energy geometries of Aun obtained are independent of the use of the first-stage DFTB/MBH. On comparing further our calculated lowest energy gold structures with other theoretical calculations and selected experimental clusters, our predicted Aun are encouraging, being in very good agreement with both.
關鍵字(中) ★ 金屬簇
★ 密度泛函理論
★ 優化算法
關鍵字(英) ★ metallic cluster
★ density functional theory
★ optimization algorithm
論文目次 Table of Contents

Abstract ................................................. i
中文摘要 ................................................ ii
Table of Contents ...................................... iii
List of Tables .......................................... iv
List of Figures .......................................... v
I. INTRODUCTION ....................................... 1
II. THEORY AND COMPUTATIONAL METHOD .................... 3
A. DFTB theory ...................................... 3
B. DFTB parameters .................................. 4
C. EMBH optimization method: hybridized DFTB/MBH and DFT/MBH .................................................. 5
D. DFT optimization ................................. 7
III. NUMERICAL RESULTS AND DISCUSSIONS .................. 7
A. Evaluation of Erep for different reference isomers .................................................. 8
B. DFTB/MBH for Aun ................................ 9
C. EMBH for Aun .................................... 14
IV. CONCLUDING REMARKS ................................. 16
Appendix A: DFTB parametrization ....................... 17
Appendix B: Fitting the repulsive energy Erep in eq.(1) 19
ACKNOWLEDGMENTS ......................................... 25
REFERENCES .............................................. 25
參考文獻
1. J. P. Wilcoxon and B.L. Abrams, Chem. Soc. Rev. 35, 1162 (2006).
2. D.L. Feldheim and Jr. C.A. Fox, Metal Nanoparticles: Synthesis, Characterization and Applications (CRC Press, Boca Raton, FL/Taylor & Francis Group, London, 2002).
3. T. Schalkhammer, Monatch. Chem. 129, 1067 (1998).
4. M. Gao, A. Lyalin, S. Maeda, and T. Taketsugu, J. Chem. Theory Comput. 10, 1623 (2014).
5. K. A. Kacprzak, J. Akolaab and H. Häkkinen, Phys. Chem. Chem. Phys. 11, 6359 (2009).
6. M. Gao, A. Lyalin, M. Takagi, S. Maeda, and T. Taketsugu, J. Phys. Chem. C 119, 11120 (2015).
7. P. Pyykko, Angew. Chem. Int. Ed. 43, 4412 (2004).
8. P. Gruene, D. M. Rayner, B. Redlich, A.F. van der Meer, J. T. Lyon, G. Meijer and A. Fielicke, Science 321, 674 (2008).
9. P. Gruene, B. Butschke, J. T. Lyon, D.M. Rayner and A. Fielicke, Zeitschrift für Physikalische Chemie 228, 337 (2014).
10. X. Xing, B. Yoon, U. Landman, and J. H. Parks, Phys. Rev. B 74, 165423 (2006).
11. P. Koskinen, H. Hakkinen, B. Huber, B. von Issendorff and M. Moseler, Phys. Rev. Lett. 98, 015701 (2007).
12. M.P. Johansson, A. Lechtken, D. Schooss, M. M. Kappes, F. Furche, Phys. Rev. A 77, 053202 (2008); A. Lechtken, C. Neiss, M. M. Kappes, and D. Schooss, Phys. Chem. Chem. Phys. 11, 4344 (2009).
13. M. Yang, F. Yang, K. A. Jackson and J. Jellinek, J. Chem. Phys. 132, 064306 (2010).
14. L. M. Wang, O. Pal, W. Huang, X. C. Zeng and L. S. Wang, J. Chem. Phys. 132, 114306 (2010).
15. A. Zanchet, A. Dorta-Urra, A. Aguado, and O. Roncero, J. Phys. Chem. C 115, 47 (2011).
16. N. A. Besley, R. L. Johnson, A. J. Stace, and J. Uppenbrink, J. Mol. Struct.: THEOCHEM 34, 75 (1995).
17. Z. Li and H. A. Scheraga, Proc. Natl. Acad. Sci. USA 84, 6611 (1987).
18. D. J. Wales and J. P. Doye, J Phys Chem A 101, 5111 (1997).
19. T.W. Yen, T.L. Lim, T.L. Yoon and S.K. Lai, unpublished.
20. T.W. Yen and S.K. Lai, J. Chem. Phys. 142, 084313 (2015).
21. G. Seifert and R. Schmidt, New J. Chem. 16, 1145 (1992).
22. D. Porezag, T. Frauenheim, T. Köhler, G. Seifert and R. Kaschner, Phys. Rev. B 51, 12947 (1995).
23. G. Seifert, D. Porezag, and T. Frauenheim, Int. J. Quantum Chem. 58, 185 (1996).
24. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai and G. Seifert, Phys. Rev. B 58, 7260 (1998).
25. P. Koskinen, H. Häkkinen, G. Seifert, S. Sanna, T. Frauenheim and M. Moseler, New J. Phys. 8, 9 (2006).
26. P. Koskinen and V. Mäkinen, Comput. Mat. Sci. 47, 237 (2009).
27. V. Mäkinen, P. Koskinen, H. Häkkinen, Eur. Phys. J. D 67, 1 (2013).
28. J. P. K. Doye, Phys. Rev. E 62, 8753 (2000).
29. S. Hobday and R. Smith, Mol. Simul. 25, 93 (2000); J. Chem. Soc. Faraday. Trans. 93, 3919 (1997). The lowest energy values in this second reference have been improved by the first one.
30. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
31. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
32. R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955)
33. A. Fihey, C. Hettich, J. Touzeau, F. Maurel, A. Perrier, C. Kohler, B. Aradi and T. Frauenheim, J. Comput. Chem. 36, 2075 (2015).
34. L. F. L. Oliveira, N. Tarrat, J. Cuny, J. Morillo, D. Lemoine, F. Spiegelman, and M. Rapacioli, J. Phys. Chem. A 120, 8469 (2016).
35. S.K. Lai, Icuk Setiyawati, T.W. Yen, Y.H. Tang, Theor. Chem. Acc. 136, 20 (2017).
36. D. Liu and J. Nocedal, Math. Program. 45, 503 (1989).
37. G. Velde, F. M. Bickelhaupt, E. J. Baerends, C. Guerra, S. J. A. van Gisbergen, J. G. Snijders and T. Ziegler, J. Comput. Chem. 22, 931 (2001).
38. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
39. A. F. Oliveira, G. Seifert, T. Heinec and H. A. Duarte, J. Braz. Chem. Soc. 20 1193 (2009).
40. Nurulia Sinta Rahmani, M.Sc. thesis, unpublished (2017).
41. H. Häkkinen, B. Yoon, U. Landman, X. Li, H. J. Zhai, L. S. Wang, J. Phys. Chem. A 107, 6168 (2003).
42. E. M. Fernández, J. M. Soler, I. L. Garzón, L. C. Balbás, Phys. Rev. B 70,165403 (2004).
43. W. Fa, C. Luo, J. Dong, Phys. Rev. B 72, 205428 (2005).
44. A. V. Walker, J. Chem. Phys. 122, 094310 (2005).
45. X. B. Li, H. Y. Wang, X. D. Yang, Z. H. Zhu, Y. J. Tang, J. Chem. Phys. 126, 084505 (2007).
46. L. Rincon, A. Hasmy, M. Marquez, C. Gonzalez, Chem. Phys. Lett. 503, 171 (2011).
47. H. M. Lee, M. Ge, B. Sahu, P. Tarakeshwar, K. S. Kim, J. Phys. Chem. B 107, 9994 (2003).
48. M.H. Lian, Private communication.
49. A.N. Alexandrova, A.I. Boldyrev, H.J. Zhai, and L.S. Wang, Coord. Chem. Rev. 250, 2811 (2006).
50. T.B. Tai, D.J. Grant, M.T. Nguyen, and D.A. Dixon, J. Phys. Chem. A 114, 994 (2010).
51. M. Atiş, C. Özdoğan, and Z.B. Güvenç, Int. J. Quantum Chem. 107, 729 (2007).
52. I. Boustani, Phys. Rev. B 55, 426 (1997).
53. I. Boustani, Surf. Sci. 370, 355 (1997).
54. H.-J. Zhai, B. Kiran, J. Li, and L.-S. Wang, Nat. Mater. 2, 827 (2003).
55. K.C. Lau, M. Deshpande, and R. Pandey, Int. J. Quantum Chem. 102, 656 (2005).
指導教授 賴山強(San-Kiong Lai) 審核日期 2017-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明