博碩士論文 105222024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.148.109.205
姓名 陳香穎(Hsiang-Ying Chen)  查詢紙本館藏   畢業系所 物理學系
論文名稱 癌細胞入侵至單層緻密血管內皮細胞後的群聚現象
(Spatiotemporal evolution of cooperative motion of the cancer/endothelia mixture after cancer cell invasion)
相關論文
★ 二加一維鏈狀微粒電漿液體微觀運動與結構之實驗研究★ 剪力下的庫倫流體微觀黏彈性反應
★ 強耦合微粒電漿中的結構與動力行為研究★ 脈衝雷射誘發之雷漿塵爆
★ 強耦合微粒電漿中脈衝雷射引發電漿微泡★ 二維強耦合微粒電漿方向序的時空尺度律
★ 二維微粒庫倫液體中集體激發微觀動力研究★ 超薄二維庫侖液體的整齊行為
★ 超薄二維微粒電漿庫侖流的微觀運動行為★ 微米狹縫中之脈衝雷射誘發二維氣泡相互作用
★ 介觀微粒庫倫液體之流變學★ 二維神經網路系統之集體發火動力學行為
★ 大白鼠腦皮質層神經元網路之同步發放行為研究★ 二維團簇腦神經網路之同步發火
★ 二維微粒電漿液體微觀結構之記憶行為★ 微粒電漿中電漿微泡的生成與交互作用之動力行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在生物中,細胞的集體運動是極為重要的過程,如胚胎演化、傷口
癒合、癌症轉移等。細胞可透過細胞間隙 (cell junction) 與近鄰細胞產生交互作用與主動爬行形成強耦合自主多體系統 (coupled many-body active system)並可展現集體合作運動。 我們研究癌細胞入侵至二維緻密單層血管內皮細胞後在時空上癌細胞群聚現象與其之動力行為。單層的血管內皮細胞運動隨著時間與細胞數增生而從液態相持續減緩至冷液體相 (cold-liquid state),意旨內皮細胞將持續運動永不停歇,這是因為細胞為主動軟物質,有無限多個自由度可主動伸展及收縮其細胞形態。並透過細胞間隙 (cell junction)交換彼此動量,因此單層血管內皮細胞可持續運動並展現類漩渦運動 (vortex-like motion)。
我們混合了 10 % 癌細胞於緻密單層血管內皮細胞,觀察癌細胞
團簇後在時空上的演變,利用活體染色發現癌細胞利用破壞血管內皮
細胞間隙侵略至單層緻密的血管內皮細胞層,由於癌細胞造成的血管
內皮細胞破口處大小不依因此引發的集體運動行為呈現多尺度的群聚
現象,亦發現癌細胞的集體運動為多尺度的類漩渦運動 (turbulent-like motion),其頻譜呈現冪次下降 (power law decay)。
摘要(英) Through the interplay of mutual coupling and self-propelling, coupled many-body active systems can exhibit collective motions, especially in biological systems such as fish schools, flocking birds, dense bacteria, confluent cells. In the systems of 2D confluent cells on the substrate, cells are strongly coupled with their neighbors through cell junctions. The highly deformable cell boundary contains a large number of degrees of freedom. Therefore, the confluent epithelial and endothelial cell monolayers have been used as model systems to investigate the
intriguing cell collective motion. Nevertheless, unlike the studies on collective motion of the single type cell monolayers mainly exhibit liquid or solid-like
collective motions, the dynamics of mixtures of two different types of cells remain elusive. In this work, we experimentally study the dynamical evolutions of a confluent
endothelial cell (EC) monolayer and a cancer cell (CC)/ EC mixture after the invasion of more motile CCs into a confluent EC monolayer. We demonstrate that slowed down the vortex like coherent motion of EC only monolayer, and the
rejuvenation of aged motion after the invasion of a small fraction of CCs. It is found that, the slowed down collective motion in EC only monolayer is due to the gradual structure relaxation and increasing EC density through
proliferation. CC invasion is associated with opening EC cell-cell junctions. With increasing time, CCs tend to gradually aggregate and form larger clusters.
Interaction with ECs through the confining fluctuating irregular EC boundary without EC-CC junction, more CCs in the larger clusters exhibit stronger turbulent motion with power law scaling extending to the lower frequency modes. It also leads to longer trajectory persistent length. The speeded up CC dynamics in turn enhances the turbulent like motion of surrounding ECs and awakes their slowed down dynamics.
關鍵字(中) ★ 細胞團簇
★ 二維漩渦系統
★ 二元混合系統
關鍵字(英) ★ Collective motion
★ Cell aggregation
★ Turbulent-like motion
★ Binary mixture
論文目次 1. Introduction 1
2. Background 4
2.1 Cell motion 4
2.1.1 Basic feature of cell 5
2.1.2 Cell migration 6
2.1.3 Cell invasion/ Cell metastasis 6
2.2 Collective motion 8
3. Experiment and Analysis 10
3.1 Cell culture 10
3.2 EC/CC cell mixture 11
3.3 Immunofluorescence staining 12
3.4 Observation system 14
3.5 Data analysis 15
4. Result and Discussion 17
4.1 Dynamical evolution of an endothelial cell monolayer 17
4.2 Dynamical evolution of EC/CC mixture 20
4.3 Cancer cell aggregation enhanced turbulent-like cancer cell collective motion and rejuvenation of aged endothelial dynamics 24
5. Conclusion 30
Bibliography 32
Appendix 35
參考文獻 [1] Bi D., Lopez J. H., Schwarz J. M., and Manning M. L., A density-independent rigidity transition in biological tissues, Nature Physics 11, 1074V1079 (2015).
[2] Park J.A., et al., Unjamming and cell shape in the asthmatic airway epithelium, Nature Materials 14, 1040V1048 (2015).
[3] Garcia S., Hannezo E., Elgeti J., Joanny J.F., Silberzan P., and Gov N. S., Physics of active jamming during collective cellular motion in a monolayer,
Proc. Natl Acad. Sci. USA 112 (50), 15314-15319 (2015).
[4] Vicsek T., Czirok A., Ben-Jacob E., Cohen I., and Shochet O., Novel Type of Phase Tran-sition in a System of Self-Driven Particles, Phys. Rev. Lett. 75, 1226 (1995).
[5] Cavagna A., Cimarelli A., Giardina I., Parisi G., Santagati R., Stefanini F., and Viale M.,Scale-free correlations in starling flocks, Proc. Natl. Acad. Sci.
USA 107, 11865 (2010).
[6] Makris N. C., Ratilal P., Symonds D. T., Jagannathan S., Lee S., and Nero R. W., Fish population and behavior revealed by instantaneous continental shelf-scale Imaging, Science 311, 660 (2006).
[7] Sokolov A., Aranson I. S., Kessler J. O., and Goldstein R. E., Concentration dependence of the collective dynamics of swimming bacteria, Phys. Rev. Lett. 98, 158102 (2007)
[8] Zhang H. P., Beer A., Florin E.-L., and Swinney H. L., Collective motion and density fluctuations in bacterial colonies, Proc. Natl. Acad. Sci. USA 107, 13626 (2010).
[9] Wensink H. H., Dunkel J., Heidenreich S., Drescher K., Goldstein R. E., Lowen H., and Yeomans J. M., Meso-scale turbulence in living fluids, Proc. Natl. Acad. Sci. USA 109, 14308 (2012).
[10] Chen C., Liu S., Shi X. -Q., Chate H. Wu Y., Weak synchronization and large-scale collective oscillation in dense bacterial suspensions, Nature 542, 210 (2017).
[11] Angelani L., Maggi C., Bernardini M. L., Rizzo A., and Leonardo R. Di, Effective interactions between Colloidal Particles Suspended in a Bath of Swimming Cells, Phys. Rev. Lett. 107, 138302 (2011).
[12] Liu K. A. and I L., Multifractal dynamics of turbulent flows in swimming bacterial suspensions, Phys. Rev. E 86, 011924 (2012).
[13] Wensink H. H. and Lowen H., Emergent states in dense systems of active rods: from swarming to turbulence, J. Phys.: Condens. Matter 24, 464130 (2012).
[14] Su Y.S., Wang H.C., and I L., Suppressing turbulence of self-propelling rods by strongly coupled passive particles, Phys. Rev. E 91, 030302(R) (2015).
[15] Puliafito A., Hufnagel L., Neveu P., Streichan S., Sigal A., Fygenson D. K., and Shraiman B. I., Collective and single cell behavior in epithelial contact inhibition, Proc. Natl Acad. Sci. USA 109 (3) 739-744 (2012).
[16] Angelini T. E., Hannezo E., Trepat X., Marquez M., Fredberg J. J., and Weitz D. A., Glass-like dynamics of collective cell migration, Proc. Natl Acad. Sci. USA 108 (12), 4714-4719 (2011).
[17] Castro M. G., Leggett S. E. and Wong I. Y., Clustering and jamming in epithelial-mesenchymal co-cultures, Soft Matter 12, 8327-8337 (2016)
[18] Nurnberg A., Kitzing T. and Grosse R., Nucleating actin for invasion, Nat. Rev. Cancer, 11, 177-187 (2011).
[19] Mitra S. K., Hanson D. A. and Schlaepfer D. D., Focal adhesion kinase: incommand and control of cell motility, Nat. Rev., 6, 56-68 (2015)
[20] Vedula S. R. K, Ravasio A., Lim C. T., and Ladoux B., Collective cell migration: A mechanistic perspective, Physiology, 28, 370-379 (2013)
[21] Geiger B, Spatz J. P., and Bershadsky A. D, Nat. Rev. Mol. Cell Biol., 10, 21 (2009)
[22] Wirtz D., Konstantopoulos K., and Searson P. C., The physics of cancer: the role of physical interactions and mechanical forces in metastasis, Nature Rev. Cancer, 11, 512-522 (2011)
[23] Reymond N., d′?́ ua B. B., and Ridley A. J., Crossing the endothelial barrier during metastasis, Nature Rev. Cancer, 13, 858-870 (2013)
[24] Schoumacher M., Goldman R. D., Louvard D., and Vignjevic D. M., J Cell Bio., Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia, 189, 541-56(2010)
[25] Ilina O, and Friedl P., Mechanisms of collective cell migration at a glance. J Cell Sci 122(Pt18):3203-3208. (2009)
[26] Anon E., Serra-Picamal X., Hersen P., Gauthier N. C., Sheetz M. P., Trepat X., and Ladoux B., Cell crawling mediates collective cell migration to close undamaged epithelial gaps, Proc Natl Acad Sci USA 109, 27, 10891-10896
(2012)
[27] Nnetu K. D., Knorr M., Strehle D., Zink M., and Käs J.A., Directed persistent motion maintains sheet integrity during multi-cellular spreading and migration. Soft Matter 8(26), 2913-2921. (2012) [28] Petitjean L., et al., Velocity fields in a collectively migrating epithelium.
Biophys J 98(9), 1790-1800. (2010)
[29] Tambe, D. T. et al., Collective cell guidance by cooperative intercellular forces. Nature Mater. 10, 469V475 (2011).
[30] Haeger, A., Krause, M., Wolf, K. and Friedl, P., Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biophys. 1840 2386-2395 (2014).
[31] Strandkvist C., Juul J., Baum B., Kabla A. J., and Duke T., A kinetic mechanism for cell sorting based on local variations in cell motility, Interface Focus, 4 (2014)
[32] Thielicke W. & Stamhuis E. J., http://PIVlab.blogspot.com.
[33] Ji-Lin Jou, 2016 Master Thesis, National Central University, Taiwan
[34] Yi-Teng Hsiao, 2017 Ph. D Thesis, National Central University, Taiwan
指導教授 伊林(Lin I) 審核日期 2017-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明